BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8177154)

  • 1. Optimization of beam parameters for dual-energy digital subtraction angiography.
    Van Lysel MS
    Med Phys; 1994 Feb; 21(2):219-26. PubMed ID: 8177154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A correlated noise reduction algorithm for dual-energy digital subtraction angiography.
    McCollough CH; Van Lysel MS; Peppler WW; Mistretta CA
    Med Phys; 1989; 16(6):873-80. PubMed ID: 2586373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy subtraction angiography is comparable to digital subtraction angiography in terms of iodine Rose SNR.
    Burton CS; Mayo JR; Cunningham IA
    Med Phys; 2016 Nov; 43(11):5925. PubMed ID: 27806612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction methods.
    Tanguay J; Kim HK; Cunningham IA
    Med Phys; 2012 Jan; 39(1):132-42. PubMed ID: 22225282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of radiographic techniques (kVp and mAs) on image quality and patient doses in digital subtraction angiography.
    Gkanatsios NA; Huda W; Peters KR
    Med Phys; 2002 Aug; 29(8):1643-50. PubMed ID: 12201409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCD camera for dual-energy digital subtraction angiography.
    Molloi S; Ersahin A; Qian YJ
    IEEE Trans Med Imaging; 1995; 14(4):747-52. PubMed ID: 18215878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR angiography with three-dimensional MR digital subtraction angiography.
    Frayne R; Grist TM; Korosec FR; Willig DS; Swan JS; Turski PA; Mistretta CA
    Top Magn Reson Imaging; 1996 Dec; 8(6):366-88. PubMed ID: 9402678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations of the lead oxide vidicon for dual-energy digital subtraction angiography.
    Van Lysel MS
    IEEE Trans Med Imaging; 1991; 10(4):530-7. PubMed ID: 18222858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive digital energy subtraction angiography with a channeling-radiation x-ray source.
    Gary CK; Piestrup MA; Boyers DG; Pincus CI; Pantell RH; Rothbart GB
    Med Phys; 1993; 20(5):1527-35. PubMed ID: 8289737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular dual-energy digital subtraction angiography: a motion immune digital subtraction technique.
    Van Lysel MS; Miller WP; Senior DG; Gupta VK; Ende DJ; Albright DJ
    Int J Card Imaging; 1991; 7(1):55-65. PubMed ID: 1753160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phantom study to evaluate contrast-medium-enhanced digital subtraction mammography with a full-field indirect-detection system.
    Palma BA; Rosado-Méndez I; Villaseñor Y; Brandan ME
    Med Phys; 2010 Feb; 37(2):577-89. PubMed ID: 20229866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filter wheel equalization in DSA: simulation results.
    Boone JM; Gardiner GA; Levin DC
    Med Phys; 1993; 20(2 Pt 1):439-48. PubMed ID: 8497236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of entrance exposure and signal-to-noise ratio between an SBDX prototype and a wide-beam cardiac angiographic system.
    Speidel MA; Wilfley BP; Star-Lack JM; Heanue JA; Betts TD; Van Lysel MS
    Med Phys; 2006 Aug; 33(8):2728-43. PubMed ID: 16964848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Densitometric assessment of regional left ventricular systolic function during graded ischemia in the dog by use of dual-energy digital subtraction ventriculography.
    McCollough CH; Miller WP; Van Lysel MS; Folts JD; Peppler WW; Albright DJ
    Am Heart J; 1993 Jun; 125(6):1667-75. PubMed ID: 8498309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of head dual energy computed tomography angiography and neuro digital subtraction angiography].
    Xu Y; Wen L; Han D; Ma CW
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2010 Dec; 32(6):699-703. PubMed ID: 21219804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Work in progress: the application of temporal filtering techniques to hybrid subtraction in digital subtraction angiography.
    Riederer SJ; Brody WR; Enzmann DR; Hall AL; Maier JK
    Radiology; 1983 Jun; 147(3):859-62. PubMed ID: 6342036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier.
    Ducote JL; Xu T; Molloi S
    Phys Med Biol; 2007 Jan; 52(1):183-96. PubMed ID: 17183135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.
    Saito M
    Med Phys; 2007 Nov; 34(11):4236-46. PubMed ID: 18072488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.