These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 81773)

  • 1. Reaction of tRNAPhe from yeast with 1-fluoro-2,4-dinitrobenzene. Attachment sites of the potential antigenic-determining 2,4-dinitrophenyl residues.
    Watanabe K; Cramer F
    Eur J Biochem; 1978 Sep; 89(2):425-32. PubMed ID: 81773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification.
    Schulman LH; Pelka H
    Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification study of aminoacyl-tRNA conformation.
    Negishi K; Nishimura S; Harada F; Hayatsu H
    Nucleic Acids Res; 1979 Mar; 6(3):899-914. PubMed ID: 375199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modification of tRNA 1 Val from yeast with monoperphthalic acid].
    Sheĭnker VSh; kiselev LL
    Mol Biol (Mosk); 1975; 9(1):105-12. PubMed ID: 1219365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study.
    Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH
    Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel conformational change of the anticodon region of tRNAPhe (yeast).
    Urbanke C; Maass G
    Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Reactivity of the 3'-terminal oligonucleotide Sequence C-A-C-C-A of tRNAPhe and tRNAVal from baker's yeast upon N-oxidation with monoperphthalic acid as compared to the oligonucleotides C-A-C-C-A and A-A-A-U-C-A-C-C-A (author's transl)].
    Solfert R; von der Haar F; Sternbach H; Sprinzl M; Cramer F
    Hoppe Seylers Z Physiol Chem; 1975 Nov; 356(11):1811-9. PubMed ID: 1107201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent derivatives of yeast tRNAPhe.
    Wintermeyer W; Zachau HG
    Eur J Biochem; 1979 Aug; 98(2):465-75. PubMed ID: 114393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 360 MHz PMR studies on the involvement of the Y-nucleoside in the conformation of 2'-OMeGpApApYpAppsi from torula yeast tRNAphe.
    Dea P; Alta M; Patt S; Schweizer MP
    Nucleic Acids Res; 1978 Feb; 5(2):307-15. PubMed ID: 634791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structurally modified yeast tRNAPhe with six nucleotides in the anticodon loop lacks significant phenylalanine acceptance.
    Nishikawa K; Hecht SM
    J Biol Chem; 1982 Sep; 257(18):10536-9. PubMed ID: 7050115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues.
    Renaud M; Bacha H; Remy P; Ebel JP
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1606-8. PubMed ID: 7015339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bisulfite-induced C changed to U transitions in yeast valine tRNA.
    Bhanot OS; Aoyagi S; Chambers RW
    J Biol Chem; 1977 Apr; 252(8):2566-74. PubMed ID: 404293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the thermal unfolding of Escherichia coli phenylalanine transfer RNA by chemical modification at elevated temperatures.
    Goddard JP; Lowdon M
    Eur J Biochem; 1978 Sep; 89(2):531-41. PubMed ID: 361393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the anticodon loop of tRNAPhe from yeast as deduced from spectroscopic studies on oligonucleotides.
    Maelicke A; von der Haar F; Sprinzl M; Cramer F
    Biopolymers; 1975 Jan; 14(1):155-71. PubMed ID: 1100138
    [No Abstract]   [Full Text] [Related]  

  • 16. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chemical modification of the CCA end of yeast tRNAPhe on its biological activity on ribosomes.
    Kruse TA; Siboska GE; Sprinzl M; Clark BF
    Eur J Biochem; 1980; 107(1):1-6. PubMed ID: 6995110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction of antigenic determining 2,4-dinitrophenyl residues into 4-thiouridine, N3-(3-L-amino-3-carboxypropyl) uridine and tRNA-Phe from E. coli.
    Seela F; Hansske F; Watanabe K; Cramer F
    Nucleic Acids Res; 1977 Mar; 4(3):711-22. PubMed ID: 68463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of excision of the Y-base on the interaction of tRNAPhe (yeast) with phenylalanyl-tRNA synthetase (yeast).
    Krauss G; Peters F; Maass G
    Nucleic Acids Res; 1976 Mar; 3(3):631-9. PubMed ID: 5707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system.
    Baksht E; de Groot N; Sprinzl M; Cramer F
    Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.