BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8177888)

  • 1. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural similarities in glucoamylase by hydrophobic cluster analysis.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Jun; 7(6):749-60. PubMed ID: 7937705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain.
    Hostinová E; Solovicová A; Dvorský R; Gasperík J
    Arch Biochem Biophys; 2003 Mar; 411(2):189-95. PubMed ID: 12623067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucoamylase: structure/function relationships, and protein engineering.
    Sauer J; Sigurskjold BW; Christensen U; Frandsen TP; Mirgorodskaya E; Harrison M; Roepstorff P; Svensson B
    Biochim Biophys Acta; 2000 Dec; 1543(2):275-293. PubMed ID: 11150611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain.
    Sevcík J; Hostinová E; Solovicová A; Gasperík J; Dauter Z; Wilson KS
    FEBS J; 2006 May; 273(10):2161-71. PubMed ID: 16649993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase.
    Chen L; Coutinho PM; Nikolov Z; Ford C
    Protein Eng; 1995 Oct; 8(10):1049-55. PubMed ID: 8771186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of starch binding domain from Rhizopus oryzae glucoamylase in complex with isomaltooligosaccharide: insights into polysaccharide binding mechanism of CBM21 family.
    Chu CH; Li KM; Lin SW; Chang MD; Jiang TY; Sun YJ
    Proteins; 2014 Jun; 82(6):1079-85. PubMed ID: 24108499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.
    Sumitani J; Tottori T; Kawaguchi T; Arai M
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and evolution of a prokaryotic glucoamylase.
    Aleshin AE; Feng PH; Honzatko RB; Reilly PJ
    J Mol Biol; 2003 Mar; 327(1):61-73. PubMed ID: 12614608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase.
    Libby CB; Cornett CA; Reilly PJ; Ford C
    Protein Eng; 1994 Sep; 7(9):1109-14. PubMed ID: 7831281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori.
    Natarajan S; Sierks MR
    Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided analysis of spatial structure of some hydrolytic enzymes.
    Artyukhov VG; Kovaleva TA; Kozhokina OM; Bitutskaya LA; Dronov RV; Trofimova OD
    Biochemistry (Mosc); 2005 Oct; 70(10):1086-94. PubMed ID: 16271023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path.
    Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ
    Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space.
    Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B
    Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae.
    Goto M; Semimaru T; Furukawa K; Hayashida S
    Appl Environ Microbiol; 1994 Nov; 60(11):3926-30. PubMed ID: 7993082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in glucoamylases encoded by variant Saccharomycopsis fibuligera genes.
    Solovicová A; Christensen T; Hostinová E; Gasperík J; Sevcĭk J; Svensson B
    Eur J Biochem; 1999 Sep; 264(3):756-64. PubMed ID: 10491121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251.
    Penninga D; van der Veen BA; Knegtel RM; van Hijum SA; Rozeboom HJ; Kalk KH; Dijkstra BW; Dijkhuizen L
    J Biol Chem; 1996 Dec; 271(51):32777-84. PubMed ID: 8955113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch.
    Goto M; Kuwano E; Kanlayakrit W; Hayashida S
    Biosci Biotechnol Biochem; 1995 Jan; 59(1):16-20. PubMed ID: 7765970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi.
    Semimaru T; Goto M; Furukawa K; Hayashida S
    Appl Environ Microbiol; 1995 Aug; 61(8):2885-90. PubMed ID: 7487021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.