BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8179184)

  • 1. An indirect free radical-based assay for the enzyme cellobiose:quinone oxidoreductase.
    Roy BP; Archibald F
    Anal Biochem; 1994 Feb; 216(2):291-8. PubMed ID: 8179184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference of laccase in determination of cellobiose dehydrogenase activity of Pleurotus ostreatus (Florida) using dichlorophenol indophenol as the electron acceptor.
    Saha T; Chakraborty TK; Saha R; Das N; Mukherjee M
    J Basic Microbiol; 2005; 45(2):142-6. PubMed ID: 15812859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose:quinone oxidoreductase.
    Odier E; Mozuch MD; Kalyanaraman B; Kirk TK
    Biochimie; 1988 Jun; 70(6):847-52. PubMed ID: 2844307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triiodide reduction by cellobiose:quinone oxidoreductase of Phanerochaete chrysosporium.
    Bao WJ; Renganathan V
    FEBS Lett; 1991 Feb; 279(1):30-2. PubMed ID: 1847342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes.
    Nazaruk E; Bilewicz R
    Bioelectrochemistry; 2007 Sep; 71(1):8-14. PubMed ID: 17289444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus.
    Temp U; Eggert C
    Appl Environ Microbiol; 1999 Feb; 65(2):389-95. PubMed ID: 9925558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium.
    Samejima M; Eriksson KE
    Eur J Biochem; 1992 Jul; 207(1):103-7. PubMed ID: 1321038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase.
    Wood JD; Wood PM
    Biochim Biophys Acta; 1992 Feb; 1119(1):90-6. PubMed ID: 1540640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of cellobiose dehydrogenases from the white-rot fungi Trametes pubescens and Trametes villosa.
    Ludwig R; Salamon A; Varga J; Zámocky M; Peterbauer CK; Kulbe KD; Haltrich D
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):213-22. PubMed ID: 14666391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.
    Vasilchenko LG; Ludwig R; Yershevich OP; Haltrich D; Rabinovich ML
    Biotechnol J; 2012 Jul; 7(7):919-30. PubMed ID: 22294389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose:quinone oxidoreductase from Trametes versicolor.
    Roy BP; Paice MG; Archibald FS; Misra SK; Misiak LE
    J Biol Chem; 1994 Aug; 269(31):19745-50. PubMed ID: 8051055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of redox interactions between lignin peroxidase and cellobiose:quinone oxidoreductase.
    Samejima M; Eriksson KE
    FEBS Lett; 1991 Nov; 292(1-2):151-3. PubMed ID: 1959597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Degradation of lignin-carbohydrate substrate by soil fungi--producers of laccase and cellobiose dehydrogenase].
    Vasil'chenko LG; Karapetian KN; Iachkova SN; ernova ES; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2004; 40(1):51-6. PubMed ID: 15029698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a radical intermediate in the enzymatic reduction of oxygen by a small laccase.
    Tepper AW; Milikisyants S; Sottini S; Vijgenboom E; Groenen EJ; Canters GW
    J Am Chem Soc; 2009 Aug; 131(33):11680-2. PubMed ID: 19645472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine.
    Abebe A; Zheng D; Evans J; Sugumaran M
    Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase.
    Baminger U; Nidetzky B; Kulbe KD; Haltrich D
    J Microbiol Methods; 1999 Apr; 35(3):253-9. PubMed ID: 10333077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staining electrophoretic gels for laccase and peroxidase activity using 1,8-diaminonaphthalene.
    Hoopes JT; Dean JF
    Anal Biochem; 2001 Jun; 293(1):96-101. PubMed ID: 11373084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase.
    Guillén F; Gómez-Toribio V; Martínez MJ; Martínez AT
    Arch Biochem Biophys; 2000 Nov; 383(1):142-7. PubMed ID: 11097187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.