BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8179184)

  • 21. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.
    Frébortová J; Novák O; Frébort I; Jorda R
    Plant J; 2010 Feb; 61(3):467-81. PubMed ID: 19912568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid.
    Van Hecke W; Bhagwat A; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H
    Biotechnol Bioeng; 2009 Apr; 102(5):1475-82. PubMed ID: 18988269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium.
    Feng J; Himmel ME; Decker SR
    Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free radical and drug oxidation products in an intensive care unit sedative: propofol with sulfite.
    Baker MT; Gregerson MS; Martin SM; Buettner GR
    Crit Care Med; 2003 Mar; 31(3):787-92. PubMed ID: 12626985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic fate of chemical mixtures. I. "Shuttle Oxidant" effect of lipoxygenase-generated radical of chlorpromazine and related phenothiazines on the oxidation of benzidine and other xenobiotics.
    Hu J; Kulkarni AP
    Teratog Carcinog Mutagen; 2000; 20(4):195-208. PubMed ID: 10910470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of efficient substrates in enhancement of peroxidase-catalyzed oxidations.
    Goodwin DC; Grover TA; Aust SD
    Biochemistry; 1997 Jan; 36(1):139-47. PubMed ID: 8993327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative transformation of phenols in aqueous mixtures.
    Gianfreda L; Sannino F; Rao MA; Bollag JM
    Water Res; 2003 Jul; 37(13):3205-15. PubMed ID: 14509708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the use of 2,4,5-trihydroxyphenethylamine as a rapid method for laccase quantification.
    Padiglia A; Medda R; Rescigno A; Floris G
    Ital J Biochem; 1994; 43(1):24-8. PubMed ID: 8206741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic substrates determination with biosensors.
    Kulys J; Tetianec L
    Biosens Bioelectron; 2005 Jul; 21(1):152-8. PubMed ID: 15967363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.
    Kiryu T; Nakano H; Kiso T; Murakami H
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):833-41. PubMed ID: 18323642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.
    Manda K; Gördes D; Mikolasch A; Hammer E; Schmidt E; Thurow K; Schauer F
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):407-16. PubMed ID: 17576553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellobiose dehydrogenase formation by filamentous fungus Chaetomium sp. INBI 2-26(-).
    Vasil'chenko LG; Khromonygina VV; Karapetyan KN; Vasilenko OV; Rabinovich ML
    J Biotechnol; 2005 Sep; 119(1):44-59. PubMed ID: 15996782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases.
    Karapetyan KN; Fedorova TV; Vasil'chenko LG; Ludwig R; Haltrich D; Rabinovich ML
    J Biotechnol; 2006 Jan; 121(1):34-48. PubMed ID: 16112765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The radical chemistry of galactose oxidase.
    Whittaker JW
    Arch Biochem Biophys; 2005 Jan; 433(1):227-39. PubMed ID: 15581579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox mediation in the peroxidase-catalyzed oxidation of aminopyrine: possible implications for drug-drug interactions.
    Goodwin DC; Grover TA; Aust SD
    Chem Res Toxicol; 1996 Mar; 9(2):476-83. PubMed ID: 8839052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.
    Vandertol-Vanier HA; Vazquez-Duhalt R; Tinoco R; Pickard MA
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):214-20. PubMed ID: 12407453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes.
    Ciullini I; Tilli S; Scozzafava A; Briganti F
    Bioresour Technol; 2008 Oct; 99(15):7003-10. PubMed ID: 18281211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The quantitative characterization of free radical sources and traps by electromigration applications.
    Donáth-Nagy G; Buchwald P; Vancea S; Croitoru M; Tokés B
    J Biochem Biophys Methods; 2008 Apr; 70(6):1317-23. PubMed ID: 18255159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.