These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 817941)

  • 1. Enhancement by chelating agents of lead toxicity to mitochondria in the presence of inorganic phosphate.
    Parr DR; Harris EJ
    FEBS Lett; 1975 Nov; 59(1):92-5. PubMed ID: 817941
    [No Abstract]   [Full Text] [Related]  

  • 2. Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca2+-chelating agents.
    Peng CF; Kane JJ; Murphy ML; Straub KD
    J Mol Cell Cardiol; 1977 Nov; 9(11):897-908. PubMed ID: 412978
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on oxidative phosphorylation. XIX. Functional site of factor B in energy transfer reactions.
    Lam KW; Yang SS
    Arch Biochem Biophys; 1969 Sep; 133(2):366-72. PubMed ID: 4309592
    [No Abstract]   [Full Text] [Related]  

  • 4. Study of the mitochondrial phosphate carrier in the course of calcium phosphate accumulation: a requirement for Mg2+ and ADP of its sensitivity to thiol reagents.
    Leblanc P; Clauser H
    Biochim Biophys Acta; 1974 May; 347(2):193-201. PubMed ID: 4407157
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of pyruvate dehydrogenase in muscle. Inhibition by citrate.
    Taylor WM; Halperin ML
    J Biol Chem; 1973 Sep; 248(17):6080-3. PubMed ID: 4726298
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of mitochondrial respiration by the phosphate potential.
    Wilson DF; Owen C; Mela L; Weiner L
    Biochem Biophys Res Commun; 1973 Jul; 53(1):326-33. PubMed ID: 4741551
    [No Abstract]   [Full Text] [Related]  

  • 7. Prevention by uncouplers of lipophilic chelator inhibition at three sites of mitochondrial electron transport.
    Phelps DC; Harmon HJ; Crane FL
    Biochem Biophys Res Commun; 1974 Aug; 59(4):1185-91. PubMed ID: 4153441
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of in vivo and in vitro administered thyroxine on substrate metabolism of isolated rabbit ventricle mitochondria. II. Characteristics of oxidative phosphorylation in mitochondria of euthyroid, hyperthyroid and thyrotoxic rabbits.
    Kimata SI; Tarjan EM
    Endocrinology; 1971 Aug; 89(2):378-84. PubMed ID: 4997572
    [No Abstract]   [Full Text] [Related]  

  • 9. ADP and Mg2+ requirement for Ca2+ accumulation by hog heart mitochondria. Correlation with energy coupling.
    Leblanc P; Clauser H
    Biochim Biophys Acta; 1974 Apr; 347(1):87-101. PubMed ID: 4474015
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of pangamic acid on oxidative phosphorylation in skeletal muscle mitochondria].
    Lenkova RI
    Tsitologiia; 1969 Nov; 11(11):1427-33. PubMed ID: 4246090
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on oxidative phosphorylation. XVI. Sulfhydryl involvement in the energy-transfer pathway.
    Kurup CK; Sanadi DR
    Biochemistry; 1968 Dec; 7(12):4483-91. PubMed ID: 4302625
    [No Abstract]   [Full Text] [Related]  

  • 12. Binding of aurovertin to phosphorylating submitochondrial particles.
    van de Stadt RJ; van Dam K
    Biochim Biophys Acta; 1974 May; 347(2):253-63. PubMed ID: 4407158
    [No Abstract]   [Full Text] [Related]  

  • 13. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles.
    Taggart WV; Sanadi DR
    Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of the energy coupling modes in mitochondria by mercurials.
    Southard JH; Green DE
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of certain iron-chelators and antibiotics on the interaction of succinate dehydrogenase and cytochrome b in ubiquinone-depleted submitochondrial particles.
    Nelson BD; Norling B; Persson B; Ernster L
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1321-9. PubMed ID: 5003688
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial oxidative phosphorylation: interaction of lead and inorganic phosphate.
    Cardona E; Lessler MA; Brierley GP
    Proc Soc Exp Biol Med; 1971 Jan; 136(1):300-4. PubMed ID: 5540629
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin.
    Mailer K; Petering DH
    Biochem Pharmacol; 1976 Sep; 25(18):2085-9. PubMed ID: 985547
    [No Abstract]   [Full Text] [Related]  

  • 18. A novel property of mitochondrial oxidative phosphorylation.
    Wilson DF; Fairs K
    Biochem Biophys Res Commun; 1974 Feb; 56(3):635-40. PubMed ID: 4363746
    [No Abstract]   [Full Text] [Related]  

  • 19. Lipophilic chelator inhibition of mitochondrial membrane-bound ATPase activity and prevention of inhibition by uncouplers.
    Phelps DC; Crane FL
    Biochem Biophys Res Commun; 1974 Nov; 61(2):671-6. PubMed ID: 4141896
    [No Abstract]   [Full Text] [Related]  

  • 20. Roles for metal ions in the hydrolysis of adenosine triphosphate by the 13S coupling factors of bacterial and mitochondrial oxidative phosphorylation.
    Adolfsen R; Moudrianakis EN
    Biochemistry; 1973 Jul; 12(15):2926-33. PubMed ID: 4268905
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.