These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8179623)

  • 1. Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes.
    Neisser A; Fromwald S; Schmatzberger A; Peschek GA
    Biochem Biophys Res Commun; 1994 Apr; 200(2):884-92. PubMed ID: 8179623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended heme promiscuity in the cyanobacterial cytochrome c oxidase: characterization of native complexes containing hemes A, O, and D, respectively.
    Fromwald S; Zoder R; Wastyn M; Lübben M; Peschek GA
    Arch Biochem Biophys; 1999 Jul; 367(1):122-8. PubMed ID: 10375407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the plasmalemma ATPase from the cyanobacteria Synechococcus PCC 6311 and PCC 7942.
    Fresneau C; Rivière ME; Arrio B
    Arch Biochem Biophys; 1993 Oct; 306(1):254-60. PubMed ID: 8215412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidic cytochrome c6 of unicellular cyanobacteria is an indispensable and kinetically competent electron donor to cytochrome oxidase in plasma and thylakoid membranes.
    Moser D; Nicholls P; Wastyn M; Peschek G
    Biochem Int; 1991 Jul; 24(4):757-68. PubMed ID: 1665972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promiscuity of heme groups in the cyanobacterial cytochrome-C oxidase.
    Auer G; Mayer B; Wastyn M; Fromwald S; Eghbalzad K; Alge D; Peschek GA
    Biochem Mol Biol Int; 1995 Dec; 37(6):1173-85. PubMed ID: 8747548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phytohormones on ATP-dependent accumulation of Ca2+ in plasma membrane vesicles from tubers of potato Solanum tuberosum L.
    Ladyzhenskaya EP; Gumanova IK
    Membr Cell Biol; 1997; 11(1):77-85. PubMed ID: 9257283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inhibitors of ion-motive ATPases on the plasma membrane potential of murine erythroleukemia cells.
    Arcangeli A; Del Bene MR; Becchetti A; Wanke E; Olivotto M
    J Membr Biol; 1992 Mar; 126(2):123-36. PubMed ID: 1534381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of redox and chelating agents on the properties of chloroplast ATPase].
    Gol'dfel'd MG; Dmitrovskiĭ LG; Bliumenfel'd LA
    Mol Biol (Mosk); 1982; 16(1):183-9. PubMed ID: 6122158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-translocating ATPase of chromaffin granule membranes.
    Apps DK
    Fed Proc; 1982 Sep; 41(11):2775-80. PubMed ID: 6288479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the vacuolar membrane ATPase of Neurospora crassa with the mitochondrial and plasma membrane ATPases.
    Bowman EJ
    J Biol Chem; 1983 Dec; 258(24):15238-44. PubMed ID: 6228553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the cyanobacterial coupling factor ATPase from Spirulina platensis. II. Activity of the purified and membrane-bound enzymes.
    Hicks DB; Yocum CF
    Arch Biochem Biophys; 1986 Feb; 245(1):230-7. PubMed ID: 2868695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing energy coupling in the yeast plasma membrane H+-ATPase with acetyl phosphate.
    Wang G; Perlin DS
    Arch Biochem Biophys; 1997 Aug; 344(2):309-15. PubMed ID: 9264544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of an extremely thermophilic ATPase in membranes of the crenarchaeon Acidianus ambivalens.
    Hinrichs M; Schäfer G; Anemüller S
    Biol Chem; 1999 Sep; 380(9):1063-9. PubMed ID: 10543443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [ATPase activity and K+ transport in membranes of anaerobically grown trk-mutants of Escherichia coli].
    Trchunian AA; Vasilian AV
    Biokhimiia; 1993 Jul; 58(7):1062-70. PubMed ID: 8364123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-glycoprotein shows strong catalytic cooperativity between the two nucleotide sites.
    Senior AE; Bhagat S
    Biochemistry; 1998 Jan; 37(3):831-6. PubMed ID: 9454572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Energization of membrane vesicles from the cells of glycolyzing bacterium Streptococcus faecalis].
    Gorneva GA; Skopinskaia SN; Demin VV; Riabova ID
    Biokhimiia; 1976 Jul; 41(6):1033-7. PubMed ID: 141304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae.
    Dharmavaram RM; Konisky J
    J Bacteriol; 1987 Sep; 169(9):3921-5. PubMed ID: 2957358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sodium nitroprusside on H+-ATPase activity and ATP concentration in Candida albicans.
    Haque MM; Pooja ; Manzoor N; Khan LA; Basir SF
    Indian J Exp Biol; 2005 Oct; 43(10):873-9. PubMed ID: 16235720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the ouabain-insensitive ATPase activity of rat liver plasma membranes.
    Oertle M; Van Dyke R; Scharschmidt BF
    Arch Int Physiol Biochim; 1984 Aug; 92(2):107-18. PubMed ID: 6208861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.