BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8179902)

  • 21. The cytoskeleton of Xenopus oocytes and its role in development.
    Wylie CC; Brown D; Godsave SF; Quarmby J; Heasman J
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():1-15. PubMed ID: 2420913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oocytes and early embryos of Xenopus laevis contain intermediate filaments which react with anti-mammalian vimentin antibodies.
    Godsave SF; Anderton BH; Heasman J; Wylie CC
    J Embryol Exp Morphol; 1984 Oct; 83():169-87. PubMed ID: 6389749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl.
    Pal JK; Gounon P; Grossi de Sa MF; Scherrer K
    J Cell Sci; 1988 Aug; 90 ( Pt 4)():555-67. PubMed ID: 3075617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence.
    Amsterdam A; Lindner HR; Groschel-Stewart U
    Anat Rec; 1977 Mar; 187(3):311-28. PubMed ID: 322543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Xenopus RalB and its involvement in F-actin control during early development.
    Moreau J; Lebreton S; Iouzalen N; Mechali M
    Dev Biol; 1999 May; 209(2):268-81. PubMed ID: 10328920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of protein kinase C in reorganization of the cortical cytoskeleton during the transition from oocyte to fertilization-competent egg.
    Capco DG; Tutnick JM; Bement WM
    J Exp Zool; 1992 Dec; 264(4):395-405. PubMed ID: 1460437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of the proteasome during Xenopus egg activation implies a link between proteasome activation and intracellular calcium release.
    Aizawa H; Kawahara H; Tanaka K; Yokosawa H
    Biochem Biophys Res Commun; 1996 Jan; 218(1):224-8. PubMed ID: 8573136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The morphological criteria and proposed mechanisms of cortical contractility in oocytes of the clawed toad].
    Riabova LV; Vasetskiĭ SG
    Ontogenez; 1996; 27(3):165-72. PubMed ID: 8754521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunolocalization of a specific type of prosome close to the bile canaliculi in fetal and adult rat liver.
    Briane D; Olink-Coux M; Vassy J; Oudar O; Huesca M; Scherrer K; Foucrier J
    Eur J Cell Biol; 1992 Feb; 57(1):30-9. PubMed ID: 1639091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A morphological study of the keratin cytoskeleton of the oocyte from the clawed toad using heterologous monoclonal antibodies].
    Riabova LV; Lehtonen E; Wartiovaara J; Vasetskiĭ SG
    Ontogenez; 1993; 24(6):22-32. PubMed ID: 7507583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression pattern of HSP25 in mouse preimplantation embryo: heat shock responses during oocyte maturation.
    Kim M; Geum D; Khang I; Park YM; Kang BM; Lee KA; Kim K
    Mol Reprod Dev; 2002 Jan; 61(1):3-13. PubMed ID: 11774370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prosomes (proteasomes) changes during differentiation are related to the type of inducer.
    Bureau JP; Henry L; Baz A; Scherrer K; Château MT
    Mol Biol Rep; 1997 Mar; 24(1-2):57-62. PubMed ID: 9228282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential cytolocalization of prosomes in axolotl during oogenesis and meiotic maturation.
    Gautier J; Pal JK; Grossi de Sa MF; Beetschen JC; Scherrer K
    J Cell Sci; 1988 Aug; 90 ( Pt 4)():543-53. PubMed ID: 3075616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The translational repressor Cup associates with the adaptor protein Miranda and the mRNA carrier Staufen at multiple time-points during Drosophila oogenesis.
    Piccioni F; Ottone C; Brescia P; Pisa V; Siciliano G; Galasso A; Gigliotti S; Graziani F; Verrotti AC
    Gene; 2009 Jan; 428(1-2):47-52. PubMed ID: 18930123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytolocation of prosome antigens on intermediate filament subnetworks of cytokeratin, vimentin and desmin type.
    Olink-Coux M; Arcangeletti C; Pinardi F; Minisini R; Huesca M; Chezzi C; Scherrer K
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():353-66. PubMed ID: 7516340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of tubulin structures in Xenopus laevis oogenesis.
    Palecek J; Habrová V; Nedvídek J; Romanovský A
    J Embryol Exp Morphol; 1985 Jun; 87():75-86. PubMed ID: 3897442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cytoskeleton organizes germ nuclei with divergent fates and asynchronous cycles in a common cytoplasm during oogenesis in the chordate Oikopleura.
    Ganot P; Kallesøe T; Thompson EM
    Dev Biol; 2007 Feb; 302(2):577-90. PubMed ID: 17123503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenopus laevis oocyte as a model for the study of the cytoskeleton.
    Carotenuto R; Tussellino M
    C R Biol; 2018 Apr; 341(4):219-227. PubMed ID: 29705198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphogenesis and the cytoskeleton: studies of the Xenopus embryo.
    Klymkowsky MW; Karnovsky A
    Dev Biol; 1994 Oct; 165(2):372-84. PubMed ID: 7525386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.