These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8180162)

  • 1. Dynamics of the interactions of histones H2A,H2B and H3,H4 with torsionally stressed DNA.
    Jackson S; Brooks W; Jackson V
    Biochemistry; 1994 May; 33(18):5392-403. PubMed ID: 8180162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone release during transcription: acetylation stabilizes the interaction of the H2A-H2B dimer with the H3-H4 tetramer in nucleosomes that are on highly positively coiled DNA.
    Wunsch A; Jackson V
    Biochemistry; 2005 Dec; 44(49):16351-64. PubMed ID: 16331996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome.
    Levchenko V; Jackson V
    Biochemistry; 2004 Mar; 43(9):2359-72. PubMed ID: 14992573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rapid transfer and selective association of histones H2A and H2B onto negatively coiled DNA at physiological ionic strength.
    Brooks W; Jackson V
    J Biol Chem; 1994 Jul; 269(27):18155-66. PubMed ID: 8027077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolded structure and reactivity of nucleosome core DNA-histone H2A,H2B complexes in solution as studied by synchrotron radiation X-ray scattering.
    Samsó M; Daban JR
    Biochemistry; 1993 May; 32(17):4609-14. PubMed ID: 8485137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone release during transcription: displacement of the two H2A-H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress.
    Levchenko V; Jackson B; Jackson V
    Biochemistry; 2005 Apr; 44(14):5357-72. PubMed ID: 15807529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential binding of histones H3 and H4 to highly positively coiled DNA.
    Jackson V
    Biochemistry; 1995 Aug; 34(33):10607-19. PubMed ID: 7654715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both.
    Jackson V
    Biochemistry; 1990 Jan; 29(3):719-31. PubMed ID: 1692479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Secondary structure of histones in solution].
    Shestopalov BV
    Mol Biol (Mosk); 1983; 17(5):949-57. PubMed ID: 6314120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium folding of the core histones: the H3-H4 tetramer is less stable than the H2A-H2B dimer.
    Banks DD; Gloss LM
    Biochemistry; 2003 Jun; 42(22):6827-39. PubMed ID: 12779337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The switch in the helical handedness of the histone (H3-H4)2 tetramer within a nucleoprotein particle requires a reorientation of the H3-H3 interface.
    Hamiche A; Richard-Foy H
    J Biol Chem; 1998 Apr; 273(15):9261-9. PubMed ID: 9535919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of salts on the stability of the H2A-H2B histone dimer.
    Gloss LM; Placek BJ
    Biochemistry; 2002 Dec; 41(50):14951-9. PubMed ID: 12475244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-complexing pattern of plant histones.
    Spiker S; Isenberg I
    Biochemistry; 1977 May; 16(9):1819-26. PubMed ID: 857880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation.
    Thiriet C; Hayes JJ
    Results Probl Cell Differ; 2006; 41():77-90. PubMed ID: 16909891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the Stability of the Histone H2A-H2B Dimer by H2A Tyr57 Phosphorylation.
    Sueoka T; Hayashi G; Okamoto A
    Biochemistry; 2017 Sep; 56(36):4767-4772. PubMed ID: 28813589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Sclerosis: Enzymatic Cross Site-Specific Hydrolysis of H1 Histone by IgGs against H1, H2A, H2B, H3, H4 Histones, and Myelin Basic Protein.
    Nevinsky GA; Baranova SV; Buneva VN; Dmitrenok PS
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation of H4 suppresses the repressive effects of the N-termini of histones H3/H4 and facilitates the formation of positively coiled DNA.
    Peterson S; Jackson V
    Biochemistry; 2008 Jul; 47(27):7053-65. PubMed ID: 18543948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of histones and histone peptides with DNA Thermal denaturation and solubility studies.
    Palau J; Climent F; Avilés FJ; Morros A; Soliva M
    Biochim Biophys Acta; 1977 May; 476(2):108-21. PubMed ID: 861226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosome core protein: asymmetric dissociation of the octamer.
    Philip M; Jamaluddin M; Chandra HS
    Biochim Biophys Acta; 1980 May; 607(3):480-9. PubMed ID: 7397178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.