These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 818020)

  • 21. Nicking of single chain Clostridium botulinum type A neurotoxin by an endogenous protease.
    Dekleva ML; DasGupta BR
    Biochem Biophys Res Commun; 1989 Jul; 162(2):767-72. PubMed ID: 2667520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergency of nicking of the toxin from the proteolytic activity of Clostridium botulinum of different types.
    Ohishi I; Sakaguchi G
    Jpn J Med Sci Biol; 1979 Apr; 32(2):130-2. PubMed ID: 396397
    [No Abstract]   [Full Text] [Related]  

  • 23. Prevalence of Clostridium botulinum type E and coexistence of C. botulinum nonproteolytic type B in the river soil of Japan.
    Yamakawa K; Nakamura S
    Microbiol Immunol; 1992; 36(6):583-91. PubMed ID: 1522809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneities of two components of C2 toxin produced by Clostridium botulinum types C and D.
    Ohishi I; Okada Y
    J Gen Microbiol; 1986 Jan; 132(1):125-31. PubMed ID: 3086490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridium botulinum type E toxins bind to Caco-2 cells by a different mechanism from that of type A toxins.
    Zhang K; Yamamoto Y; Suzuki T; Yokota K; Ma S; Ni Nengah Dwi Fatmawati ; Oguma K
    Acta Med Okayama; 2012; 66(3):253-61. PubMed ID: 22729106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and properties of Clostridium botulinum type F toxin.
    Yang KH; Sugiyama H
    Appl Microbiol; 1975 May; 29(5):598-603. PubMed ID: 807160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular structures and biological activities of Clostridium botulinum toxins.
    Sakaguchi G; Oishi I; Kozaki S; Sakaguchi S; Kitamura M
    Jpn J Med Sci Biol; 1974 Apr; 27(2):95-9. PubMed ID: 4601038
    [No Abstract]   [Full Text] [Related]  

  • 28. Diversity of proteolytic Clostridium botulinum strains, determined by a pulsed-field gel electrophoresis approach.
    Nevas M; Lindström M; Hielm S; Björkroth KJ; Peck MW; Korkeala H
    Appl Environ Microbiol; 2005 Mar; 71(3):1311-7. PubMed ID: 15746333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes.
    Ohishi I; Sakaguchi G
    Infect Immun; 1980 May; 28(2):303-9. PubMed ID: 7399665
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular construction of Clostridium botulinum type F progenitor toxin.
    Ohishi I; Sakaguchi G
    Appl Microbiol; 1975 Apr; 29(4):444-7. PubMed ID: 235882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay.
    Wictome M; Newton K; Jameson K; Hallis B; Dunnigan P; Mackay E; Clarke S; Taylor R; Gaze J; Foster K; Shone C
    Appl Environ Microbiol; 1999 Sep; 65(9):3787-92. PubMed ID: 10473376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes.
    Sugii S; Ohishi I; Sakaguchi G
    Infect Immun; 1977 Jun; 16(3):910-4. PubMed ID: 19355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acid precipitation of Clostridium botulinum type C and D toxins from whole culture by addition of ribonucleic acid as a precipitation aid.
    Iwasaki M; Sakaguchi G
    Infect Immun; 1978 Feb; 19(2):749-51. PubMed ID: 344224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative molecular topography of botulinum neurotoxins from Clostridium butyricum and Clostridium botulinum type E.
    Singh BR; Giménez JA; DasGupta BR
    Biochim Biophys Acta; 1991 Mar; 1077(1):119-26. PubMed ID: 1901221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective and differential medium for detecting Clostridium botulinum.
    Silas JC; Carpenter JA; Hamdy MK; Harrison MA
    Appl Environ Microbiol; 1985 Oct; 50(4):1110-1. PubMed ID: 2867740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Difficulties of molecular dissociation of Clostridium botulinum type G progenitor toxin.
    Nukina M; Mochida Y; Sakaguchi S; Sakaguchi G
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):165-70. PubMed ID: 1905655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil.
    Smith LD
    Appl Microbiol; 1975 Aug; 30(2):319-23. PubMed ID: 169734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antigenic similarity of toxins produced by Clostridium botulinum type C and D strains.
    Oguma K; Syuto B; Iida H; Kubo S
    Infect Immun; 1980 Dec; 30(3):656-60. PubMed ID: 6785231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Similarity in nucleotide sequence of the gene encoding nontoxic component of botulinum toxin produced by toxigenic Clostridium butyricum strain BL6340 and Clostridium botulinum type E strain Mashike.
    Fujii N; Kimura K; Yokosawa N; Oguma K; Yashiki T; Takeshi K; Ohyama T; Isogai E; Isogai H
    Microbiol Immunol; 1993; 37(5):395-8. PubMed ID: 8355622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of botulinum toxins in the absence of nicking.
    Ohishi I; Sakaguchi G
    Infect Immun; 1977 Aug; 17(2):402-7. PubMed ID: 19360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.