These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8180205)

  • 41. Identification and characterization of a thermostable bifunctional enzyme with phosphomannose isomerase and sugar-1-phosphate nucleotidylyltransferase activities from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3.
    Akutsu J; Zhang Z; Morita R; Kawarabayasi Y
    Extremophiles; 2015 Nov; 19(6):1077-85. PubMed ID: 26290359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and sequence analysis of the pmi gene encoding phosphomannose isomerase of Streptococcus mutans.
    Sato Y; Yamamoto Y; Kizaki H; Kuramitsu HK
    FEMS Microbiol Lett; 1993 Nov; 114(1):61-6. PubMed ID: 8293960
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bifunctional phosphoglucose/phosphomannose isomerase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Hansen T; Urbanke C; Schönheit P
    Extremophiles; 2004 Dec; 8(6):507-12. PubMed ID: 15290326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arginine chemical modification of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase.
    Padgette SR; Smith CE; Huynh QK; Kishore GM
    Arch Biochem Biophys; 1988 Oct; 266(1):254-62. PubMed ID: 3178227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for phosphomannose isomerase activity in phosphoglucose isomerase from Pyrobaculum aerophilum: a subtle difference between distantly related enzymes.
    Swan MK; Hansen T; Schönheit P; Davies C
    Biochemistry; 2004 Nov; 43(44):14088-95. PubMed ID: 15518558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An essential arginine residue at the substrate-binding site of p-hydroxybenzoate hydroxylase.
    Shoun H; Beppu T; Arima K
    J Biol Chem; 1980 Oct; 255(19):9319-24. PubMed ID: 7410426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Essential arginine residue in gramicidin S synthetase 1 of Bacillus brevis.
    Kanda M; Hori K; Kurotsu T; Yamada Y; Miura S; Saito Y
    J Biochem; 1982 Mar; 91(3):939-43. PubMed ID: 7076652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of essential arginine residue(s) for Mg-ATP binding of human argininosuccinate synthetase.
    Isashiki Y; Noda T; Kobayashi K; Sase M; Saheki T; Titani K
    Protein Seq Data Anal; 1989 Jul; 2(4):283-7. PubMed ID: 2788888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of arginine residues of porcine muscle acylphosphatase.
    Tamura T; Mizuno Y; Shiokawa H
    Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis.
    Gadda G; Negri A; Pilone MS
    J Biol Chem; 1994 Jul; 269(27):17809-14. PubMed ID: 7913089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational study of human phosphomannose isomerase: Insights from homology modeling and molecular dynamics simulation of enzyme bound substrate.
    Xiao J; Guo Z; Guo Y; Chu F; Sun P
    J Mol Graph Model; 2006 Nov; 25(3):289-95. PubMed ID: 16488169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of gamma-glutamyl transpeptidase with glutathione involves specific arginine and lysine residues of the heavy subunit.
    Stole E; Meister A
    J Biol Chem; 1991 Sep; 266(27):17850-7. PubMed ID: 1680853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Labeling of a specific arginine residue at the active site of glutamine synthetase (E.coli).
    Colanduoni JA; Villafranca JJ
    Biochem Biophys Res Commun; 1985 Jan; 126(1):412-8. PubMed ID: 2857563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme.
    Ray S; Sarkar D; Ray M
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase.
    Ghosh M; Datta AK
    Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):295-301. PubMed ID: 8135734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of type I and type II phosphomannose isomerases by the reaction intermediate analogue 5-phospho-D-arabinonohydroxamic acid supports a catalytic role for the metal cofactor.
    Roux C; Lee JH; Jeffery CJ; Salmon L
    Biochemistry; 2004 Mar; 43(10):2926-34. PubMed ID: 15005628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.