BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8180233)

  • 1. Electron spin echo envelope modulation spectroscopy of the molybdenum center of xanthine oxidase.
    Lorigan GA; Britt RD; Kim JH; Hille R
    Biochim Biophys Acta; 1994 May; 1185(3):284-94. PubMed ID: 8180233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the "rapid type 1" molybdenum(V) electron paramagnetic resonance signal.
    Hille R; Kim JH; Hemann C
    Biochemistry; 1993 Apr; 32(15):3973-80. PubMed ID: 8385992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction.
    Manikandan P; Choi EY; Hille R; Hoffman BM
    J Am Chem Soc; 2001 Mar; 123(11):2658-63. PubMed ID: 11456936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-nuclear double resonance spectroscopy of the desulfo-inhibited molybdenum(V) center in bovine milk xanthine oxidase.
    Edmondson DE; D'Ardenne SC
    Biochemistry; 1989 Jul; 28(14):5924-30. PubMed ID: 2550065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical systems modeling the d
    Young CG
    J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase.
    Raitsimring AM; Astashkin AV; Feng C; Enemark JH; Nelson KJ; Rajagopalan KV
    J Biol Inorg Chem; 2003 Jan; 8(1-2):95-104. PubMed ID: 12459903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II.
    Caldeira J; Belle V; Asso M; Guigliarelli B; Moura I; Moura JJ; Bertrand P
    Biochemistry; 2000 Mar; 39(10):2700-7. PubMed ID: 10704221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanism of action of xanthine oxidase.
    Choi EY; Stockert AL; Leimkühler S; Hille R
    J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Rapidly appearing" molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase.
    Bray RC; Vänngård T
    Biochem J; 1969 Oct; 114(4):725-34. PubMed ID: 4310055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family.
    Boer DR; Thapper A; Brondino CD; Romão MJ; Moura JJ
    J Am Chem Soc; 2004 Jul; 126(28):8614-5. PubMed ID: 15250689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence.
    Kim JH; Ryan MG; Knaut H; Hille R
    J Biol Chem; 1996 Mar; 271(12):6771-80. PubMed ID: 8636099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of the molybdenum center of the pathogenic R160Q mutant of human sulfite oxidase by pulsed EPR spectroscopy and 17O and 33S labeling.
    Astashkin AV; Johnson-Winters K; Klein EL; Feng C; Wilson HL; Rajagopalan KV; Raitsimring AM; Enemark JH
    J Am Chem Soc; 2008 Jul; 130(26):8471-80. PubMed ID: 18529001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed electron paramagnetic resonance spectroscopy of (33)S-labeled molybdenum cofactor in catalytically active bioengineered sulfite oxidase.
    Klein EL; Belaidi AA; Raitsimring AM; Davis AC; Krämer T; Astashkin AV; Neese F; Schwarz G; Enemark JH
    Inorg Chem; 2014 Jan; 53(2):961-71. PubMed ID: 24387640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor.
    Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM
    Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive half-reaction of xanthine oxidase with xanthine. Observation of a spectral intermediate attributable to the molybdenum center in the reaction of enzyme with xanthine.
    Kim JH; Hille R
    J Biol Chem; 1993 Jan; 268(1):44-51. PubMed ID: 8380164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate orientation in xanthine oxidase: crystal structure of enzyme in reaction with 2-hydroxy-6-methylpurine.
    Pauff JM; Zhang J; Bell CE; Hille R
    J Biol Chem; 2008 Feb; 283(8):4818-24. PubMed ID: 18063585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical characterization of the "very rapid" Mo(V) species generated in the oxidation of xanthine oxidase.
    Bayse CA
    Inorg Chem; 2006 Mar; 45(5):2199-202. PubMed ID: 16499383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed EPR studies of nonexchangeable protons near the Mo(V) center of sulfite oxidase: direct detection of the alpha-proton of the coordinated cysteinyl residue and structural implications for the active site.
    Astashkin AV; Raitsimring AM; Feng C; Johnson JL; Rajagopalan KV; Enemark JH
    J Am Chem Soc; 2002 May; 124(21):6109-18. PubMed ID: 12022845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.