These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8180234)

  • 21. Cytochrome c oxidase binding of hydrogen peroxide.
    Bickar D; Bonaventura J; Bonaventura C
    Biochemistry; 1982 May; 21(11):2661-6. PubMed ID: 6284205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover.
    Thörnström PE; Brzezinski P; Fredriksson PO; Malmström BG
    Biochemistry; 1988 Jul; 27(15):5441-7. PubMed ID: 2846037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer from cytochrome c to 8-azido-ATP-modified cytochrome c oxidase.
    Lin J; Wu S; Chan SI
    Biochemistry; 1995 May; 34(19):6335-43. PubMed ID: 7756261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-electron reduction is required for rapid internal electron transfer in resting, pulsed and oxygenated cytochrome c oxidase.
    Fabian M; Thörnström PE; Brzezinski P; Malmström BG
    FEBS Lett; 1987 Mar; 213(2):396-400. PubMed ID: 3030819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single electron reduction of 'slow' and 'fast' cytochrome-c oxidase.
    Moody AJ; Brandt U; Rich PR
    FEBS Lett; 1991 Nov; 293(1-2):101-5. PubMed ID: 1660000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c.
    Antalis TM; Palmer G
    J Biol Chem; 1982 Jun; 257(11):6194-206. PubMed ID: 6281261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Routes of electron transfer in beef heart cytochrome c oxidase: is there a unique pathway used by all reductants?
    Crinson M; Nicholls P
    Biochem Cell Biol; 1992 May; 70(5):301-8. PubMed ID: 1323303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c.
    Greenwood C; Brittain T
    Biochem J; 1976 Sep; 157(3):591-8. PubMed ID: 186026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study.
    Hill BC; Woon TC; Nicholls P; Peterson J; Greenwood C; Thomson AJ
    Biochem J; 1984 Dec; 224(2):591-600. PubMed ID: 6097224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser flash photolysis studies of electron transfer mechanisms in cytochromes: an aromatic residue at position 82 is not required for cytochrome c reduction by flavin semiquinones or electron transfer from cytochrome c to cytochrome oxidase.
    Hazzard JT; Mauk AG; Tollin G
    Arch Biochem Biophys; 1992 Oct; 298(1):91-5. PubMed ID: 1326255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Factors determining electron-transfer rates in cytochrome c oxidase: studies of the FQ(I-391) mutant of the Rhodobacter sphaeroides enzyme.
    Adelroth P; Mitchell DM; Gennis RB; Brzezinski P
    Biochemistry; 1997 Sep; 36(39):11787-96. PubMed ID: 9305969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen.
    Hill BC
    J Biol Chem; 1994 Jan; 269(4):2419-25. PubMed ID: 8300568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox-state sensing by hydrogen bonds in the CuA center of cytochrome c oxidase.
    Abriata LA; Vila AJ
    J Inorg Biochem; 2014 Mar; 132():18-20. PubMed ID: 24012017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mixed valence state of the oxidase binuclear centre: how Thermus thermophilus cytochrome ba3 differs from classical aa3 in the aerobic steady state and when inhibited by cyanide.
    Nicholls P; Soulimane T
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):381-7. PubMed ID: 15100054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the low-temperature intermediates of the reaction of fully reduced soluble cytochrome oxidase with oxygen by electron-paramagnetic-resonance and optical spectroscopy.
    Clore GM; Andréasson LE; Karlsson B; Aasa R; Malmström BG
    Biochem J; 1980 Jan; 185(1):139-54. PubMed ID: 6246874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase.
    Jancura D; Stanicova J; Palmer G; Fabian M
    Biochemistry; 2014 Jun; 53(22):3564-75. PubMed ID: 24840065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anion and ionic strength effects upon the oxidation of cytochrome c by cytochrome c oxidase.
    Brooks SP; Nicholls P
    Biochim Biophys Acta; 1982 Apr; 680(1):33-43. PubMed ID: 6280764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.