BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8180501)

  • 1. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.
    Boylan M; Douglas N; Quail PH
    Plant Cell; 1994 Mar; 6(3):449-60. PubMed ID: 8180501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor.
    Casal JJ; Davis SJ; Kirchenbauer D; Viczian A; Yanovsky MJ; Clough RC; Kircher S; Jordan-Beebe ET; Schäfer E; Nagy F; Vierstra RD
    Plant Physiol; 2002 Jul; 129(3):1127-37. PubMed ID: 12114567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.
    Jordan ET; Marita JM; Clough RC; Vierstra RD
    Plant Physiol; 1997 Oct; 115(2):693-704. PubMed ID: 9342873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoresponses of transgenic Arabidopsis overexpressing the fern Adiantum capillus-veneris PHY1.
    Okamoto H; Sakamoto K; Tomizawa KI; Nagatani A; Wada M
    Plant Physiol; 1997 Sep; 115(1):79-85. PubMed ID: 9306692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings.
    Emmler K; Stockhaus J; Chua NH; Schäfer E
    Planta; 1995; 197(1):103-10. PubMed ID: 7580859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses.
    Büche C; Poppe C; Schäfer E; Kretsch T
    Plant Cell; 2000 Apr; 12(4):547-58. PubMed ID: 10760243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A.
    Parks BM; Quail PH
    Plant Cell; 1993 Jan; 5(1):39-48. PubMed ID: 8439743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino-terminus of phytochrome A contains two distinct functional domains.
    Jordan ET; Cherry JR; Walker JM; Vierstra RD
    Plant J; 1996 Feb; 9(2):243-57. PubMed ID: 8820609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction.
    Bolle C; Koncz C; Chua NH
    Genes Dev; 2000 May; 14(10):1269-78. PubMed ID: 10817761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome requires the 6-kDa N-terminal domain for full biological activity.
    Cherry JR; Hondred D; Walker JM; Vierstra RD
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5039-43. PubMed ID: 1594611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades.
    Usami T; Matsushita T; Oka Y; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2007 Mar; 48(3):424-33. PubMed ID: 17251203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus.
    Matsushita T; Mochizuki N; Nagatani A
    Nature; 2003 Jul; 424(6948):571-4. PubMed ID: 12891362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
    Kneissl J; Shinomura T; Furuya M; Bolle C
    Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.
    Boylan MT; Quail PH
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10806-10. PubMed ID: 11607244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity.
    Wagner D; Quail PH
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8596-600. PubMed ID: 7567981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of rice phytochrome A partially complements phytochrome B deficiency in Arabidopsis.
    Halliday KJ; Bolle C; Chua NH; Whitelam GC
    Planta; 1999 Jan; 207(3):401-9. PubMed ID: 9951735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2.
    Kim BC; Soh MC; Kang BJ; Furuya M; Nam HG
    Plant J; 1996 Apr; 9(4):441-56. PubMed ID: 8624510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.