These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 8180833)
21. Suprachiasmatic nucleus transplants function as an endogenous oscillator only in constant darkness. Aguilar-Roblero R; García-Hernández F; Aguilar R; Arankowsky-Sandoval G; Drucker-Colín R Neurosci Lett; 1986 Aug; 69(1):47-52. PubMed ID: 3748466 [TBL] [Abstract][Full Text] [Related]
22. Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Cagampang FR; Yang J; Nakayama Y; Fukuhara C; Inouye ST Brain Res Mol Brain Res; 1994 Jul; 24(1-4):179-84. PubMed ID: 7968355 [TBL] [Abstract][Full Text] [Related]
23. Circadian change in tryptophan hydroxylase protein levels within the rat intergeniculate leaflets and raphe nuclei. Malek ZS; Pévet P; Raison S Neuroscience; 2004; 125(3):749-58. PubMed ID: 15099688 [TBL] [Abstract][Full Text] [Related]
24. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. Nováková M; Sládek M; Sumová A J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815 [TBL] [Abstract][Full Text] [Related]
25. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus. Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668 [TBL] [Abstract][Full Text] [Related]
26. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Nováková M; Polidarová L; Sládek M; Sumová A Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132 [TBL] [Abstract][Full Text] [Related]
27. Effect of photic stimuli disturbing overt circadian rhythms on the dorsomedial and ventrolateral SCN rhythmicity. Sumová A; Illnerová H Brain Res; 2005 Jun; 1048(1-2):161-9. PubMed ID: 15913573 [TBL] [Abstract][Full Text] [Related]
28. Short-day response in Djungarian hamsters of different circadian phenotypes. Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562 [TBL] [Abstract][Full Text] [Related]
29. Developmental disruption of the serotonin system alters circadian rhythms. Paulus EV; Mintz EM Physiol Behav; 2012 Jan; 105(2):257-63. PubMed ID: 21907225 [TBL] [Abstract][Full Text] [Related]
30. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light. Beaulé C; Houle LM; Amir S J Mol Neurosci; 2003; 21(2):133-47. PubMed ID: 14593213 [TBL] [Abstract][Full Text] [Related]
31. Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Cagampang FR; Sheward WJ; Harmar AJ; Piggins HD; Coen CW Brain Res Mol Brain Res; 1998 Feb; 54(1):108-12. PubMed ID: 9526060 [TBL] [Abstract][Full Text] [Related]
32. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Polidarová L; Sládek M; Novosadová Z; Sumová A Chronobiol Int; 2017; 34(1):105-117. PubMed ID: 27791401 [TBL] [Abstract][Full Text] [Related]
33. Persistence of nonphotic phase shifts in hamsters after serotonin depletion in the suprachiasmatic nucleus. Bobrzynska KJ; Vrang N; Mrosovsky N Brain Res; 1996 Nov; 741(1-2):205-14. PubMed ID: 9001724 [TBL] [Abstract][Full Text] [Related]
34. Circadian change of VIP mRNA in the rat suprachiasmatic nucleus following p-chlorophenylalanine (PCPA) treatment in constant darkness. Okamura H; Kawakami F; Tamada Y; Geffard M; Nishiwaki T; Ibata Y; Inouye ST Brain Res Mol Brain Res; 1995 Apr; 29(2):358-64. PubMed ID: 7609623 [TBL] [Abstract][Full Text] [Related]
35. 5-HT1B receptor knockout mice exhibit an enhanced response to constant light. Sollars PJ; Ogilvie MD; Rea MA; Pickard GE J Biol Rhythms; 2002 Oct; 17(5):428-37. PubMed ID: 12375619 [TBL] [Abstract][Full Text] [Related]
36. Circadian rhythm of AMPA receptor GluR2/3 subunit-immunoreactivity in the suprachiasmatic nuclei of Syrian hamster and effect of a light-dark cycle. Chambille I Brain Res; 1999 Jun; 833(1):27-38. PubMed ID: 10375674 [TBL] [Abstract][Full Text] [Related]
37. A suprachiasmatic-independent circadian clock(s) in the habenula is affected by Per gene mutations and housing light conditions in mice. Salaberry NL; Hamm H; Felder-Schmittbuhl MP; Mendoza J Brain Struct Funct; 2019 Jan; 224(1):19-31. PubMed ID: 30242505 [TBL] [Abstract][Full Text] [Related]
38. Circadian rhythm of Arg-vasopressin contents in the suprachiasmatic nucleus in relation to corticosterone. Isobe Y; Isobe M Brain Res; 1998 Jul; 800(1):78-85. PubMed ID: 9685591 [TBL] [Abstract][Full Text] [Related]
39. Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus. Kováciková Z; Sládek M; Laurinová K; Bendová Z; Illnerová H; Sumová A Brain Res; 2005 Dec; 1064(1-2):83-9. PubMed ID: 16289486 [TBL] [Abstract][Full Text] [Related]
40. Regulation of cAMP response element binding protein (CREB) binding in the mammalian clock pacemaker by light but not a circadian clock. Kako K; Banasik M; Lee K; Ishida N Brain Res Mol Brain Res; 1997 Feb; 44(1):39-45. PubMed ID: 9030696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]