BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8181462)

  • 1. Ionization state and pKa of pterin-analogue ligands bound to dihydrofolate reductase.
    Jeong SS; Gready JE
    Eur J Biochem; 1994 May; 221(3):1055-62. PubMed ID: 8181462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity relationships and pH dependence of binding of 8-alkyl-N5-deazapterins to dihydrofolate reductase.
    Ivery MT; Gready JE
    J Med Chem; 1994 Nov; 37(24):4211-21. PubMed ID: 7990119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a spectrofluorimetric method for determining the pKa of pterin-analogue ligands bound to DHFR.
    Jeong SS; Gready JE
    Adv Exp Med Biol; 1993; 338():529-32. PubMed ID: 8304173
    [No Abstract]   [Full Text] [Related]  

  • 4. Human dihydrofolate reductase: reduction of alternative substrates, pH effects, and inhibition by deazafolates.
    Williams EA; Morrison JF
    Biochemistry; 1992 Jul; 31(29):6801-11. PubMed ID: 1637816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-dependence of the binding of dihydrofolate and substrate analogues to dihydrofolate reductase from Escherichia coli.
    Stone SR; Morrison JF
    Biochim Biophys Acta; 1983 Jun; 745(3):247-58. PubMed ID: 6344924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination by Raman spectroscopy of the pKa of N5 of dihydrofolate bound to dihydrofolate reductase: mechanistic implications.
    Chen YQ; Kraut J; Blakley RL; Callender R
    Biochemistry; 1994 Jun; 33(23):7021-6. PubMed ID: 8003467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided drug design: a free energy perturbation study on the binding of methyl-substituted pterins and N5-deazapterins to dihydrofolate reductase.
    Cummins PL; Gready JE
    J Comput Aided Mol Des; 1993 Oct; 7(5):535-55. PubMed ID: 8294945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mechanism-based substrates of dihydrofolate reductase and the thermodynamics of ligand binding: a comparison of theory and experiment for 8-methylpterin and 6,8-dimethylpterin.
    Cummins PL; Gready JE
    Proteins; 1993 Apr; 15(4):426-35. PubMed ID: 8460112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of enzyme and ligand protonation on the binding of folates to recombinant human dihydrofolate reductase: implications for the evolution of eukaryotic enzyme efficiency.
    Appleman JR; Tsay JT; Freisheim JH; Blakley RL
    Biochemistry; 1992 Apr; 31(14):3709-15. PubMed ID: 1314649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.
    Stone SR; Morrison JF
    Biochim Biophys Acta; 1983 Jun; 745(3):237-46. PubMed ID: 6860674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanism of the dihydrofolate reductase reaction as determined by pH studies.
    Stone SR; Morrison JF
    Biochemistry; 1984 Jun; 23(12):2753-8. PubMed ID: 6380573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond.
    Cummins PL; Gready JE
    J Mol Graph Model; 2000 Feb; 18(1):42-9. PubMed ID: 10935206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity labeling of dihydrofolate reductase with an antifolate glyoxal.
    Johanson RA; Henkin J
    J Biol Chem; 1985 Feb; 260(3):1465-74. PubMed ID: 3881433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C and 15N nuclear magnetic resonance evidence that the active site carboxyl group of dihydrofolate reductase is not involved in the relay of a proton to substrate.
    Blakley RL; Appleman JR; Freisheim JH; Jablonsky MJ
    Arch Biochem Biophys; 1993 Nov; 306(2):501-9. PubMed ID: 8105754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and energetic ranking of possible docking sites for pterin on dihydrofolate reductase.
    Bliznyuk AA; Gready JE
    J Comput Aided Mol Des; 1998 Jul; 12(4):325-33. PubMed ID: 9777491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate.
    Morrison JF; Stone SR
    Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consideration of the pH-dependent inhibition of dihydrofolate reductase by methotrexate.
    Cannon WR; Garrison BJ; Benkovic SJ
    J Mol Biol; 1997 Aug; 271(4):656-68. PubMed ID: 9281432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical studies on the activation of the pterin cofactor in the catalytic mechanism of dihydrofolate reductase.
    Gready JE
    Biochemistry; 1985 Aug; 24(18):4761-6. PubMed ID: 4074659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.