These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 8181483)
1. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Sandmeier E; Hale TI; Christen P Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483 [TBL] [Abstract][Full Text] [Related]
2. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Momany C; Ghosh R; Hackert ML Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340 [TBL] [Abstract][Full Text] [Related]
3. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases. Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066 [TBL] [Abstract][Full Text] [Related]
4. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates. Torrens-Spence MP; von Guggenberg R; Lazear M; Ding H; Li J BMC Plant Biol; 2014 Sep; 14():247. PubMed ID: 25230835 [TBL] [Abstract][Full Text] [Related]
5. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases. Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288 [TBL] [Abstract][Full Text] [Related]
7. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous. Jackson FR J Mol Evol; 1990 Oct; 31(4):325-9. PubMed ID: 2124279 [TBL] [Abstract][Full Text] [Related]
8. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. Wu F; Christen P; Gehring H FASEB J; 2011 Jul; 25(7):2109-22. PubMed ID: 21454364 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Alexander FW; Sandmeier E; Mehta PK; Christen P Eur J Biochem; 1994 Feb; 219(3):953-60. PubMed ID: 8112347 [TBL] [Abstract][Full Text] [Related]
10. Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies. Kidron H; Repo S; Johnson MS; Salminen TA Mol Biol Evol; 2007 Jan; 24(1):79-89. PubMed ID: 16997906 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of aminoacid decarboxylases by non-steroidal antiinflammatory drugs. Bruni G; Dal Pra P; Segre G Int J Tissue React; 1984; 6(6):463-9. PubMed ID: 6442285 [TBL] [Abstract][Full Text] [Related]
12. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. Takatsuka Y; Yamaguchi Y; Ono M; Kamio Y J Bacteriol; 2000 Dec; 182(23):6732-41. PubMed ID: 11073919 [TBL] [Abstract][Full Text] [Related]
13. Analysis of antibody reactivity against cysteine sulfinic acid decarboxylase, a pyridoxal phosphate-dependent enzyme, in endocrine autoimmune disease. Sköldberg F; Rorsman F; Perheentupa J; Landin-Olsson M; Husebye ES; Gustafsson J; Kämpe O J Clin Endocrinol Metab; 2004 Apr; 89(4):1636-40. PubMed ID: 15070923 [TBL] [Abstract][Full Text] [Related]
14. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes. Guirard BM; Snell EE J Bacteriol; 1987 Sep; 169(9):3963-8. PubMed ID: 3114230 [TBL] [Abstract][Full Text] [Related]
15. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review. Canellakis ES; Kyriakidis DA; Rinehart CA; Huang SC; Panagiotidis C; Fong WF Biosci Rep; 1985 Mar; 5(3):189-204. PubMed ID: 3893559 [TBL] [Abstract][Full Text] [Related]
16. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Grishin NV; Phillips MA; Goldsmith EJ Protein Sci; 1995 Jul; 4(7):1291-304. PubMed ID: 7670372 [TBL] [Abstract][Full Text] [Related]
17. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes. Gani D Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):131-9. PubMed ID: 1678532 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395. Sugawara A; Matsui D; Takahashi N; Yamada M; Asano Y; Isobe K J Biosci Bioeng; 2014 Nov; 118(5):496-501. PubMed ID: 24863180 [TBL] [Abstract][Full Text] [Related]
19. A comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level. Smith DM; Thomas NR; Gani D Experientia; 1991 Dec; 47(11-12):1104-18. PubMed ID: 1765122 [TBL] [Abstract][Full Text] [Related]