BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 8181483)

  • 1. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases.
    Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M
    Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates.
    Torrens-Spence MP; von Guggenberg R; Lazear M; Ding H; Li J
    BMC Plant Biol; 2014 Sep; 14():247. PubMed ID: 25230835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases.
    Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR
    Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian L-amino acid decarboxylases producing 1,4-diamines: analogies among differences.
    Viguera E; Trelles O; Urdiales JL; Matés JM; Sánchez-Jiménez F
    Trends Biochem Sci; 1994 Aug; 19(8):318-9. PubMed ID: 7940675
    [No Abstract]   [Full Text] [Related]  

  • 7. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous.
    Jackson FR
    J Mol Evol; 1990 Oct; 31(4):325-9. PubMed ID: 2124279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.
    Wu F; Christen P; Gehring H
    FASEB J; 2011 Jul; 25(7):2109-22. PubMed ID: 21454364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families.
    Alexander FW; Sandmeier E; Mehta PK; Christen P
    Eur J Biochem; 1994 Feb; 219(3):953-60. PubMed ID: 8112347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies.
    Kidron H; Repo S; Johnson MS; Salminen TA
    Mol Biol Evol; 2007 Jan; 24(1):79-89. PubMed ID: 16997906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of aminoacid decarboxylases by non-steroidal antiinflammatory drugs.
    Bruni G; Dal Pra P; Segre G
    Int J Tissue React; 1984; 6(6):463-9. PubMed ID: 6442285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes.
    Takatsuka Y; Yamaguchi Y; Ono M; Kamio Y
    J Bacteriol; 2000 Dec; 182(23):6732-41. PubMed ID: 11073919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of antibody reactivity against cysteine sulfinic acid decarboxylase, a pyridoxal phosphate-dependent enzyme, in endocrine autoimmune disease.
    Sköldberg F; Rorsman F; Perheentupa J; Landin-Olsson M; Husebye ES; Gustafsson J; Kämpe O
    J Clin Endocrinol Metab; 2004 Apr; 89(4):1636-40. PubMed ID: 15070923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes.
    Guirard BM; Snell EE
    J Bacteriol; 1987 Sep; 169(9):3963-8. PubMed ID: 3114230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review.
    Canellakis ES; Kyriakidis DA; Rinehart CA; Huang SC; Panagiotidis C; Fong WF
    Biosci Rep; 1985 Mar; 5(3):189-204. PubMed ID: 3893559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the spatial structure of eukaryotic ornithine decarboxylases.
    Grishin NV; Phillips MA; Goldsmith EJ
    Protein Sci; 1995 Jul; 4(7):1291-304. PubMed ID: 7670372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes.
    Gani D
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):131-9. PubMed ID: 1678532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395.
    Sugawara A; Matsui D; Takahashi N; Yamada M; Asano Y; Isobe K
    J Biosci Bioeng; 2014 Nov; 118(5):496-501. PubMed ID: 24863180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level.
    Smith DM; Thomas NR; Gani D
    Experientia; 1991 Dec; 47(11-12):1104-18. PubMed ID: 1765122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii.
    Abell LM; O'Leary MH
    Biochemistry; 1988 Aug; 27(16):5927-33. PubMed ID: 3191100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.