BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8181697)

  • 21. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium.
    Ritchey TW; Seeley HW
    J Gen Microbiol; 1974 Dec; 85(2):220-8. PubMed ID: 4155716
    [No Abstract]   [Full Text] [Related]  

  • 22. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    DEIBEL RH; KVETKAS MJ
    J Bacteriol; 1964 Oct; 88(4):858-64. PubMed ID: 14219047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture.
    Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.
    Girbal L; Soucaille P
    J Bacteriol; 1994 Nov; 176(21):6433-8. PubMed ID: 7961393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relation between the oxidation state of nicotinamide-adenine dinucleotide and the metabolism of spermatozoa.
    Brooks DE; Mann T
    Biochem J; 1972 Oct; 129(5):1023-34. PubMed ID: 4144231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
    Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT
    J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Påhlman IL; Gustafsson L; Rigoulet M; Larsson C
    Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11.
    Doi Y; Ikegami Y
    J Bacteriol; 2014 Jul; 196(13):2472-80. PubMed ID: 24769696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis strain 10Cl.
    Smalley AJ; Jahrling P; Van Demark PJ
    J Bacteriol; 1968 Nov; 96(5):1595-600. PubMed ID: 4302299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro.
    Garofalo O; Cox DW; Bachelard HS
    J Neurochem; 1988 Jul; 51(1):172-6. PubMed ID: 3379400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli.
    de Graef MR; Alexeeva S; Snoep JL; Teixeira de Mattos MJ
    J Bacteriol; 1999 Apr; 181(8):2351-7. PubMed ID: 10197995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.
    Doi Y
    Appl Environ Microbiol; 2015 Mar; 81(6):2082-9. PubMed ID: 25576618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium.
    Guedon E; Payot S; Desvaux M; Petitdemange H
    J Bacteriol; 1999 May; 181(10):3262-9. PubMed ID: 10322031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes.
    Li SL; Freguia S; Liu SM; Cheng SS; Tsujimura S; Shirai O; Kano K
    Biosens Bioelectron; 2010 Aug; 25(12):2651-6. PubMed ID: 20494569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages.
    Mintz S; Robin ED
    J Clin Invest; 1971 Jun; 50(6):1181-6. PubMed ID: 4325308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.