These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8181727)

  • 21. The CcmE protein from Escherichia coli is a haem-binding protein.
    Reid E; Eaves DJ; Cole JA
    FEMS Microbiol Lett; 1998 Sep; 166(2):369-75. PubMed ID: 9770295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases.
    Mogi T
    J Biochem; 2009 May; 145(5):599-607. PubMed ID: 19174546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model.
    Beckett CS; Loughman JA; Karberg KA; Donato GM; Goldman WE; Kranz RG
    Mol Microbiol; 2000 Nov; 38(3):465-81. PubMed ID: 11069671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamate 107 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli is protonated and near the heme d/heme b595 binuclear center.
    Yang K; Zhang J; Vakkasoglu AS; Hielscher R; Osborne JP; Hemp J; Miyoshi H; Hellwig P; Gennis RB
    Biochemistry; 2007 Mar; 46(11):3270-8. PubMed ID: 17305364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site.
    Hoeser J; Hong S; Gehmann G; Gennis RB; Friedrich T
    FEBS Lett; 2014 May; 588(9):1537-41. PubMed ID: 24681096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd.
    Meunier B; Madgwick SA; Reil E; Oettmeier W; Rich PR
    Biochemistry; 1995 Jan; 34(3):1076-83. PubMed ID: 7827023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12.
    Metheringham R; Griffiths L; Crooke H; Forsythe S; Cole J
    Arch Microbiol; 1995 Oct; 164(4):301-7. PubMed ID: 7487336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochromes bd-I and bo
    Galván AE; Chalón MC; Schurig-Briccio LA; Salomón RA; Minahk CJ; Gennis RB; Bellomio A
    Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):110-118. PubMed ID: 29107655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterisation of Escherichia coli K-12 mutants defective in formate-dependent nitrite reduction: essential roles for hemN and the menFDBCE operon.
    Tyson K; Metheringham R; Griffiths L; Cole J
    Arch Microbiol; 1997 Nov; 168(5):403-11. PubMed ID: 9325429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A factor produced by Escherichia coli K-12 inhibits the growth of E. coli mutants defective in the cytochrome bd quinol oxidase complex: enterochelin rediscovered.
    Cook GM; Loder C; Søballe B; Stafford GP; Membrillo-Hernández J; Poole RK
    Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3297-3308. PubMed ID: 9884221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli.
    Grovc J; Busby S; Cole J
    Mol Gen Genet; 1996 Sep; 252(3):332-41. PubMed ID: 8842153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds.
    Sambongi Y; Ferguson SJ
    FEBS Lett; 1996 Dec; 398(2-3):265-8. PubMed ID: 8977120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CydDC family of transporters.
    Poole RK; Cozens AG; Shepherd M
    Res Microbiol; 2019; 170(8):407-416. PubMed ID: 31279084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo assembly of the cytochrome d terminal oxidase complex of Escherichia coli from genes encoding the two subunits expressed on separate plasmids.
    Newton G; Gennis RB
    Biochim Biophys Acta; 1991 May; 1089(1):8-12. PubMed ID: 1851043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox control of fast ligand dissociation from Escherichia coli cytochrome bd.
    Borisov VB; Forte E; Sarti P; Brunori M; Konstantinov AA; Giuffrè A
    Biochem Biophys Res Commun; 2007 Mar; 355(1):97-102. PubMed ID: 17280642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis.
    Feissner RE; Richard-Fogal CL; Frawley ER; Kranz RG
    Mol Microbiol; 2006 Jul; 61(1):219-31. PubMed ID: 16824107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cytochromes of anaerobically grown Escherichia coli. An electron-paramagnetic-resonance study of the cytochrome bd complex in situ.
    Rothery RA; Ingledew WJ
    Biochem J; 1989 Jul; 261(2):437-43. PubMed ID: 2549971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli.
    Arslan E; Schulz H; Zufferey R; Künzler P; Thöny-Meyer L
    Biochem Biophys Res Commun; 1998 Oct; 251(3):744-7. PubMed ID: 9790980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.