BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8181779)

  • 21. Pseudomonas corrugata (NRRL B-30409) Mutants Increased Phosphate Solubilization, Organic Acid Production, and Plant Growth at Lower Temperatures.
    Trivedi P; Sa T
    Curr Microbiol; 2008 Feb; 56(2):140-4. PubMed ID: 18026795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine.
    Chai B; Wu Y; Liu P; Liu B; Gao M
    J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth.
    Iyer B; Rajput MS; Rajkumar S
    Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability.
    Della Mónica IF; Godoy MS; Godeas AM; Scervino JM
    J Appl Microbiol; 2018 Jan; 124(1):155-165. PubMed ID: 29072359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate.
    Biswas DR; Narayanasamy G
    Bioresour Technol; 2006 Dec; 97(18):2243-51. PubMed ID: 16545954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching.
    Jones GC; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2735-42. PubMed ID: 22584431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of temperature, pH and osmotic-concentrations on pigmentation of alkaline and fertile soil Aspergilli.
    Thakur ML
    Microbios; 1973; 8(31):175-82. PubMed ID: 4589867
    [No Abstract]   [Full Text] [Related]  

  • 29. Solubilization of phosphorus from phosphate rocks with Acidithiobacillus thiooxidans following a growing-then-recovery process.
    Calle-Castañeda SM; Márquez-Godoy MA; Hernández-Ortiz JP
    World J Microbiol Biotechnol; 2017 Dec; 34(1):17. PubMed ID: 29288469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased osmotic tolerance of some aspergilli isolated from 'Usar' (alkaline) soils--a possible indication of ecological specialization.
    Rai JN; Agarwal SC
    Mycopathol Mycol Appl; 1974 Apr; 52(3):299-305. PubMed ID: 4407838
    [No Abstract]   [Full Text] [Related]  

  • 31. Optimizations of particle size and pulp density for solubilization of rock phosphate by a microbial consortium from activated sludge.
    Xiao C; Wu X; Liu T; Xu G; Chi R
    Prep Biochem Biotechnol; 2017 Jul; 47(6):562-569. PubMed ID: 28032819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Leptospirillum-like bacteria and their role in pyrite oxidation].
    Vardanian NS; Akopian VP
    Mikrobiologiia; 2003; 72(4):493-7. PubMed ID: 14526539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.
    Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B
    Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Salinity optima as affected by temperature for some "Usar" soil Aspergilli.
    Rai JN; Agarwal SC
    Mycopathol Mycol Appl; 1973 Aug; 50(4):307-12. PubMed ID: 4748982
    [No Abstract]   [Full Text] [Related]  

  • 35. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth.
    Xiao C; Chi R; He H; Qiu G; Wang D; Zhang W
    Appl Biochem Biotechnol; 2009 Nov; 159(2):330-42. PubMed ID: 19277482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.
    Percak-Dennett E; He S; Converse B; Konishi H; Xu H; Corcoran A; Noguera D; Chan C; Bhattacharyya A; Borch T; Boyd E; Roden EE
    Geobiology; 2017 Sep; 15(5):690-703. PubMed ID: 28452176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of heterotrophic microbial growth on biological oxidation of pyrite.
    Marchand EA; Silverstein J
    Environ Sci Technol; 2002 Dec; 36(24):5483-90. PubMed ID: 12521179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source.
    Banik S; Dey BK
    Zentralbl Mikrobiol; 1983; 138(1):17-23. PubMed ID: 6845902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate solubilizing ability of Emericella nidulans strain V1 isolated from vermicompost.
    Bhattacharya SS; Barman S; Ghosh R; Duary RK; Goswami L; Mandal NC
    Indian J Exp Biol; 2013 Oct; 51(10):840-8. PubMed ID: 24266109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphate solubilization by fungi associated with legume root nodules.
    Chhonkar PK; Subba-Rao NS
    Can J Microbiol; 1967 Jul; 13(7):749-53. PubMed ID: 6036878
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.