These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

921 related articles for article (PubMed ID: 8182467)

  • 21. Anticipatory postural control in adaptation of goal-directed lower extremity movements.
    Moriyama M; Kouzaki M; Hagio S
    Sci Rep; 2024 Feb; 14(1):4142. PubMed ID: 38374164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke.
    Wood JM; Thompson E; Wright H; Festa L; Morton SM; Reisman DS; Kim HE
    bioRxiv; 2024 Jul; ():. PubMed ID: 38370851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prior uncertainty impedes discrete locomotor adaptation.
    Jiang A; Grover FM; Bucklin M; Deol J; Shafer A; Gordon KE
    PLoS One; 2024; 19(2):e0291284. PubMed ID: 38363788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shaping Human Movement via Bimanually-Dependent Haptic Force Feedback.
    Boehm JR; Fey NP; Majewicz Fey A
    World Haptics Conf; 2023 Jul; 2023():266-272. PubMed ID: 38222039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying motor adaptation in a sport-specific table tennis setting.
    Carius D; Kaminski E; Clauß M; Schewe Y; Ryk L; Ragert P
    Sci Rep; 2024 Jan; 14(1):601. PubMed ID: 38182640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning context shapes bimanual control strategy and generalization of novel dynamics.
    Orschiedt J; Franklin DW
    PLoS Comput Biol; 2023 Dec; 19(12):e1011189. PubMed ID: 38064495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Purposely Induced Asymmetric Walking Perturbations on Limb Loading After Anterior Cruciate Ligament Reconstruction.
    Halkiadakis Y; Davidson N; Morgan KD
    Orthop J Sports Med; 2023 Nov; 11(11):23259671231211274. PubMed ID: 38021311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Exploratory Multi-Session Study of Learning High-Dimensional Body-Machine Interfacing for Assistive Robot Control.
    Lee JM; Gebrekristos T; De Santis D; Nejati-Javaremi M; Gopinath D; Parikh B; Mussa-Ivaldi FA; Argall BD
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between decision-making and motor learning when selecting reach targets in the presence of bias and noise.
    Zhu T; Gallivan JP; Wolpert DM; Flanagan JR
    PLoS Comput Biol; 2023 Nov; 19(11):e1011596. PubMed ID: 37917718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A robot-aided visuomotor wrist training induces motor and proprioceptive learning that transfers to the untrained ipsilateral elbow.
    Zhu H; Wang Y; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J
    J Neuroeng Rehabil; 2023 Oct; 20(1):143. PubMed ID: 37875916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory Restoration for Improved Motor Control of Prostheses.
    Fisher LE; Gaunt RA; Huang H
    Curr Opin Biomed Eng; 2023 Dec; 28():. PubMed ID: 37860289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction force modeling and analysis of the human-machine kinematic chain based on the human-machine deviation.
    Zhou X; Duan Z
    Sci Rep; 2023 Oct; 13(1):17393. PubMed ID: 37833378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement Motor Learning After Cerebellar Damage Is Related to State Estimation.
    White CM; Snow EC; Therrien AS
    Cerebellum; 2024 Jun; 23(3):1061-1073. PubMed ID: 37828231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adapting to Altered Sensory Input: Effects of Induced Paresthesia on Goal-Directed Movement Planning and Execution.
    Mortaza N; Passmore SR; Glazebrook CM
    Brain Sci; 2023 Sep; 13(9):. PubMed ID: 37759942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using principles of motor control to analyze performance of human machine interfaces.
    Patwardhan S; Gladhill KA; Joiner WM; Schofield JS; Lee BS; Sikdar S
    Sci Rep; 2023 Aug; 13(1):13273. PubMed ID: 37582852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A haptic illusion created by gravity.
    Opsomer L; Delhaye BP; Théate V; Thonnard JL; Lefèvre P
    iScience; 2023 Jul; 26(7):107246. PubMed ID: 37485356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of interacting neural populations: methods and statistical considerations.
    Kass RE; Bong H; Olarinre M; Xin Q; Urban KN
    J Neurophysiol; 2023 Sep; 130(3):475-496. PubMed ID: 37465897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cerebellar population coding model for sensorimotor learning.
    Wang T; Ivry RB
    bioRxiv; 2024 Apr; ():. PubMed ID: 37461557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of probabilistic context inference on motor adaptation.
    Cuevas Rivera D; Kiebel S
    PLoS One; 2023; 18(7):e0286749. PubMed ID: 37399219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory weighting of position and force feedback during pinching.
    Geelen JE; van der Helm FCT; Schouten AC; Mugge W
    Exp Brain Res; 2023 Aug; 241(8):2009-2018. PubMed ID: 37382669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.