These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1113 related articles for article (PubMed ID: 8182467)

  • 41. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
    Shi H; Sun Y; Li J
    Comput Intell Neurosci; 2018; 2018():8535429. PubMed ID: 29666634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Error amplification to promote motor learning and motivation in therapy robotics.
    Shirzad N; Van der Loos HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3907-10. PubMed ID: 23366782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal and amplitude generalization in motor learning.
    Goodbody SJ; Wolpert DM
    J Neurophysiol; 1998 Apr; 79(4):1825-38. PubMed ID: 9535951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shared internal models for feedforward and feedback control.
    Wagner MJ; Smith MA
    J Neurosci; 2008 Oct; 28(42):10663-73. PubMed ID: 18923042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impedance control is tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Burdet E; Kawato M; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5358-61. PubMed ID: 19163928
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space.
    Leclere NX; Sarlegna FR; Coello Y; Bourdin C
    Neuropsychologia; 2019 Aug; 131():193-204. PubMed ID: 31091426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The coordinate system for force control.
    Saha DJ; Hu X; Perreault E; Murray W; Mussa-Ivaldi FA
    Exp Brain Res; 2015 Mar; 233(3):899-908. PubMed ID: 25479739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load?
    Malfait N; Ostry DJ
    J Neurosci; 2004 Sep; 24(37):8084-9. PubMed ID: 15371509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Task-specific internal models for kinematic transformations.
    Tong C; Flanagan JR
    J Neurophysiol; 2003 Aug; 90(2):578-85. PubMed ID: 12904486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catch trials in force field learning influence adaptation and consolidation of human motor memory.
    Stockinger C; Focke A; Stein T
    Front Hum Neurosci; 2014; 8():231. PubMed ID: 24795598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are there distinct neural representations of object and limb dynamics?
    Cothros N; Wong JD; Gribble PL
    Exp Brain Res; 2006 Sep; 173(4):689-97. PubMed ID: 16525798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
    Hosseini EA; Nguyen KP; Joiner WM
    PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory change following motor learning.
    Mattar AA; Nasir SM; Darainy M; Ostry DJ
    Prog Brain Res; 2011; 191():31-44. PubMed ID: 21741542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A mathematical model of the adaptive control of human arm motions.
    Sanner RM; Kosha M
    Biol Cybern; 1999 May; 80(5):369-82. PubMed ID: 10365428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The 24-h savings of adaptation to novel movement dynamics initially reflects the recall of previous performance.
    Nguyen KP; Zhou W; McKenna E; Colucci-Chang K; Bray LCJ; Hosseini EA; Alhussein L; Rezazad M; Joiner WM
    J Neurophysiol; 2019 Sep; 122(3):933-946. PubMed ID: 31291156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impedance control balances stability with metabolically costly muscle activation.
    Franklin DW; So U; Kawato M; Milner TE
    J Neurophysiol; 2004 Nov; 92(5):3097-105. PubMed ID: 15201309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Whole body adaptation to novel dynamics does not transfer between effectors.
    Pienciak-Siewert A; Ahmed AA
    J Neurophysiol; 2021 Oct; 126(4):1345-1360. PubMed ID: 34433001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Learning and generalization in an isometric visuomotor task.
    Rotella MF; Nisky I; Koehler M; Rinderknecht MD; Bastian AJ; Okamura AM
    J Neurophysiol; 2015 Mar; 113(6):1873-84. PubMed ID: 25520430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.