BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 8182744)

  • 1. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid propensities for secondary structures are influenced by the protein structural class.
    Costantini S; Colonna G; Facchiano AM
    Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions.
    Perkins SJ; Smith KF; Williams SC; Haris PI; Chapman D; Sim RB
    J Mol Biol; 1994 Apr; 238(1):104-19. PubMed ID: 8145250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%.
    Mehta PK; Heringa J; Argos P
    Protein Sci; 1995 Dec; 4(12):2517-25. PubMed ID: 8580842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein secondary structure prediction using local alignments.
    Salamov AA; Solovyev VV
    J Mol Biol; 1997 Apr; 268(1):31-6. PubMed ID: 9149139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of amino acid patterns of classified helices and strands in secondary structure prediction.
    Zhu ZY; Blundell TL
    J Mol Biol; 1996 Jul; 260(2):261-76. PubMed ID: 8764405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ.
    de Pereda JM; Leynadier D; Evangelio JA; Chacón P; Andreu JM
    Biochemistry; 1996 Nov; 35(45):14203-15. PubMed ID: 8916905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide.
    Griffiths-Jones SR; Sharman GJ; Maynard AJ; Searle MS
    J Mol Biol; 1998 Dec; 284(5):1597-609. PubMed ID: 9878373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of the PsbQ protein of photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods.
    Balsera M; Arellano JB; Gutiérrez JR; Heredia P; Revuelta JL; De Las Rivas J
    Biochemistry; 2003 Feb; 42(4):1000-7. PubMed ID: 12549920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities.
    Lüthy R; McLachlan AD; Eisenberg D
    Proteins; 1991; 10(3):229-39. PubMed ID: 1881879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of strand pairing in antiparallel and parallel beta-sheets using information theory.
    Steward RE; Thornton JM
    Proteins; 2002 Aug; 48(2):178-91. PubMed ID: 12112687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues.
    Donnelly D; Overington JP; Ruffle SV; Nugent JH; Blundell TL
    Protein Sci; 1993 Jan; 2(1):55-70. PubMed ID: 8443590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining prediction of secondary structure and solvent accessibility in proteins.
    Adamczak R; Porollo A; Meller J
    Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.