These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 8183345)

  • 61. Ssk1p response regulator binding surface on histidine-containing phosphotransfer protein Ypd1p.
    Porter SW; Xu Q; West AH
    Eukaryot Cell; 2003 Feb; 2(1):27-33. PubMed ID: 12582120
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina).
    Hérivaux A; Lavín JL; de Bernonville TD; Vandeputte P; Bouchara JP; Gastebois A; Oguiza JA; Papon N
    Curr Genet; 2018 Aug; 64(4):841-851. PubMed ID: 29249052
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Signal transduction in the budding yeast Saccharomyces cerevisiae.
    Oehlen B; Cross FR
    Curr Opin Cell Biol; 1994 Dec; 6(6):836-41. PubMed ID: 7880530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation.
    Kolitsida P; Zhou J; Rackiewicz M; Nolic V; Dengjel J; Abeliovich H
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20517-20527. PubMed ID: 31548421
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A two-component histidine kinase gene that functions in Dictyostelium development.
    Wang N; Shaulsky G; Escalante R; Loomis WF
    EMBO J; 1996 Aug; 15(15):3890-8. PubMed ID: 8670894
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases.
    Gey U; Czupalla C; Hoflack B; Rödel G; Krause-Buchholz U
    J Biol Chem; 2008 Apr; 283(15):9759-67. PubMed ID: 18180296
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems.
    Xu Q; Porter SW; West AH
    Structure; 2003 Dec; 11(12):1569-81. PubMed ID: 14656441
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses.
    Hagiwara D; Matsubayashi Y; Marui J; Furukawa K; Yamashino T; Kanamaru K; Kato M; Abe K; Kobayashi T; Mizuno T
    Biosci Biotechnol Biochem; 2007 Mar; 71(3):844-7. PubMed ID: 17341812
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Regulation of stress-dependent signal transduction by protein phosphatase 2C].
    Hanada M
    Seikagaku; 2001 May; 73(5):378-81. PubMed ID: 11452446
    [No Abstract]   [Full Text] [Related]  

  • 70. Phosphorylation and dephosphorylation of histidine residues in proteins.
    Klumpp S; Krieglstein J
    Eur J Biochem; 2002 Feb; 269(4):1067-71. PubMed ID: 11856347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Signal transduction. Bringing the eukaryotes up to speed.
    Swanson RV; Simon MI
    Curr Biol; 1994 Mar; 4(3):234-7. PubMed ID: 7922328
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance.
    Krems B; Charizanis C; Entian KD
    Curr Genet; 1996 Mar; 29(4):327-34. PubMed ID: 8598053
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Histidine kinases from bacteria to humans.
    Attwood PV
    Biochem Soc Trans; 2013 Aug; 41(4):1023-8. PubMed ID: 23863173
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Histidine kinases in signal transduction pathways of eukaryotes.
    Loomis WF; Shaulsky G; Wang N
    J Cell Sci; 1997 May; 110 ( Pt 10)():1141-5. PubMed ID: 9191038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Purification of a protein histidine kinase from the yeast Saccharomyces cerevisiae. The first member of this class of protein kinases.
    Huang JM; Wei YF; Kim YH; Osterberg L; Matthews HR
    J Biol Chem; 1991 May; 266(14):9023-31. PubMed ID: 2026610
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evolution of two-component signal transduction.
    Koretke KK; Lupas AN; Warren PV; Rosenberg M; Brown JR
    Mol Biol Evol; 2000 Dec; 17(12):1956-70. PubMed ID: 11110912
    [TBL] [Abstract][Full Text] [Related]  

  • 77. PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data.
    Chen WM; Danziger SA; Chiang JH; Aitchison JD
    Bioinformatics; 2013 Oct; 29(19):2435-44. PubMed ID: 23832245
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803.
    Xu W; Wang Y
    Appl Biochem Biotechnol; 2019 Aug; 188(4):1022-1065. PubMed ID: 30778824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two-component signal transduction.
    Stock AM; Robinson VL; Goudreau PN
    Annu Rev Biochem; 2000; 69():183-215. PubMed ID: 10966457
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway.
    Kaserer AO; Andi B; Cook PF; West AH
    Methods Enzymol; 2010; 471():59-75. PubMed ID: 20946842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.