These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 8183639)
1. Electrophysiological evidence for the presence of an apical H(+)-ATPase in Malpighian tubules of Formica polyctena: intracellular and luminal pH measurements. Zhang SL; Leyssens A; Van Kerkhove E; Weltens R; Van Driessche W; Steels P Pflugers Arch; 1994 Feb; 426(3-4):288-95. PubMed ID: 8183639 [TBL] [Abstract][Full Text] [Related]
2. Contributions of K+:Cl- cotransport and Na+/K+-ATPase to basolateral ion transport in malpighian tubules of Drosophila melanogaster. Linton SM; O'Donnell MJ J Exp Biol; 1999 Jun; 202(Pt 11):1561-70. PubMed ID: 10229702 [TBL] [Abstract][Full Text] [Related]
3. K(+) transport in Malpighian tubules of Tenebrio molitor L: a study of electrochemical gradients and basal K(+) uptake mechanisms. Wiehart UI; Nicolson SW; Van Kerkhove E J Exp Biol; 2003 Mar; 206(Pt 6):949-57. PubMed ID: 12582137 [TBL] [Abstract][Full Text] [Related]
4. Effects of bafilomycin A1 and amiloride on the apical potassium and proton gradients in Drosophila Malpighian tubules studied by X-ray microanalysis and microelectrode measurements. Wessing A; Bertram G; Zierold K J Comp Physiol B; 1993; 163(6):452-62. PubMed ID: 8300919 [TBL] [Abstract][Full Text] [Related]
5. Intracellular ion activities in Malpighian tubule cells of Rhodnius prolixus: evaluation of Na+-K+-2Cl- cotransport across the basolateral membrane. Ianowski JP; Christensen RJ; O'Donnell MJ J Exp Biol; 2002 Jun; 205(Pt 11):1645-55. PubMed ID: 12000809 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of K+ uptake across the basal membrane of malpighian tubules of Formica polyctena: the effect of ions and inhibitors. Leyssens A; Dijkstra S; Van Kerkhove E; Steels P J Exp Biol; 1994 Oct; 195():123-45. PubMed ID: 7964409 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of the luminal proton pump in malpighian tubules of the ant. Dijkstra S; Lohrmann E; Van Kerkhove E; Greger R Ren Physiol Biochem; 1994; 17(1):27-39. PubMed ID: 7509501 [TBL] [Abstract][Full Text] [Related]
9. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium. Trchounian A; Ohanjayan E; Zakharyan E Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical gradients for Na+, K+, Cl- and H+ across the apical membrane in Malpighian (renal) tubule cells of Rhodnius prolixus. Ianowski JP; O'Donnell MJ J Exp Biol; 2006 May; 209(Pt 10):1964-75. PubMed ID: 16651561 [TBL] [Abstract][Full Text] [Related]
11. The dependence of electrical transport pathways in Malpighian tubules on ATP. Wu DS; Beyenbach KW J Exp Biol; 2003 Jan; 206(Pt 2):233-43. PubMed ID: 12477894 [TBL] [Abstract][Full Text] [Related]
12. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. Coast GM; Webster SG; Schegg KM; Tobe SS; Schooley DA J Exp Biol; 2001 May; 204(Pt 10):1795-804. PubMed ID: 11316500 [TBL] [Abstract][Full Text] [Related]
13. Cell and luminal activities of chloride, potassium, sodium and protons in the late distal tubule of Necturus kidney. Anagnostopoulos T; Planelles G J Physiol; 1987 Dec; 393():73-89. PubMed ID: 2833599 [TBL] [Abstract][Full Text] [Related]
14. Intracellular pH regulation by the plasma membrane V-ATPase in Malpighian tubules of Drosophila larvae. Bertram G; Wessing A J Comp Physiol B; 1994; 164(3):238-46. PubMed ID: 8089311 [TBL] [Abstract][Full Text] [Related]
15. Effects of dinitrophenol on active-transport processes and cell membranes in the Malpighian tubule of Formica. Dijkstra S; Lohrmann E; Van Kerkhove E; Steels P; Greger R Pflugers Arch; 1994 Sep; 428(2):150-6. PubMed ID: 7971171 [TBL] [Abstract][Full Text] [Related]
16. Intracellular Na+, K+ and Cl- activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide. Coast GM J Exp Biol; 2012 Aug; 215(Pt 16):2774-85. PubMed ID: 22837449 [TBL] [Abstract][Full Text] [Related]
17. Effect of lumen pH on cell pH and cell potential in rabbit proximal tubules. Kuwahara M; Ishibashi K; Krapf R; Rector FC; Berry CA Am J Physiol; 1989 Jun; 256(6 Pt 2):F1075-83. PubMed ID: 2735421 [TBL] [Abstract][Full Text] [Related]
18. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane. Novak I; Greger R Pflugers Arch; 1988 Jan; 411(1):58-68. PubMed ID: 3353213 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti. Scott BN; Yu MJ; Lee LW; Beyenbach KW J Exp Biol; 2004 Apr; 207(Pt 10):1655-63. PubMed ID: 15073198 [TBL] [Abstract][Full Text] [Related]
20. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. Patrick ML; Aimanova K; Sanders HR; Gill SS J Exp Biol; 2006 Dec; 209(Pt 23):4638-51. PubMed ID: 17114398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]