These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8184285)

  • 41. Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products.
    Plinkert PK; Bootz F; Vossieck T
    Eur Arch Otorhinolaryngol; 1994; 251(2):95-9. PubMed ID: 8024768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling and estimating acoustic transfer functions of external ears with or without headphones.
    Deng H; Yang J
    J Acoust Soc Am; 2015 Aug; 138(2):694-707. PubMed ID: 26328687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accuracy of acoustic ear canal impedances: finite element simulation of measurement methods using a coupling tube.
    Schmidt S; Hudde H
    J Acoust Soc Am; 2009 Jun; 125(6):3819-27. PubMed ID: 19507964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical simulation of wave propagation in a realistic model of the human external ear.
    Fadaei M; Abouali O; Emdad H; Faramarzi M; Ahmadi G
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1797-810. PubMed ID: 25513857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. What middle ear parameters tell about impedance matching and high frequency hearing.
    Hemilä S; Nummela S; Reuter T
    Hear Res; 1995 May; 85(1-2):31-44. PubMed ID: 7559177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of the pinna in human localization.
    Batteau DW
    Proc R Soc Lond B Biol Sci; 1967 Aug; 168(1011):158-80. PubMed ID: 4383726
    [No Abstract]   [Full Text] [Related]  

  • 47. Measuring the real-ear to coupler difference transfer function with an insert earphone and a hearing instrument: are they the same?
    Munro KJ; Toal S
    Ear Hear; 2005 Feb; 26(1):27-34. PubMed ID: 15692302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interference effects and phase sensitivity in hearing.
    Moore BC
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):833-58. PubMed ID: 12804282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Standing wave patterns in the human ear canal used for estimation of acoustic energy reflectance at the eardrum.
    Lawton BW; Stinson MR
    J Acoust Soc Am; 1986 Apr; 79(4):1003-9. PubMed ID: 3700855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Electrical activation of human external auricular muscles (at rest and during perception of acoustic signals)].
    Iurkianets EA; Matiushkin DP
    Biull Eksp Biol Med; 1973 Mar; 75(3):16-9. PubMed ID: 4804634
    [No Abstract]   [Full Text] [Related]  

  • 51. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.
    Keefe DH; Bulen JC; Campbell SL; Burns EM
    J Acoust Soc Am; 1994 Jan; 95(1):355-71. PubMed ID: 8120247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wideband acoustic immittance measures: developmental characteristics (0 to 12 months).
    Kei J; Sanford CA; Prieve BA; Hunter LL
    Ear Hear; 2013 Jul; 34 Suppl 1():17S-26S. PubMed ID: 23900174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurements of acoustic impedance at the input to the occluded ear canal.
    Larson VD; Nelson JA; Cooper WA; Egolf DP
    J Rehabil Res Dev; 1993; 30(1):129-36. PubMed ID: 8263823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impedance changes elicited by electrocutaneous stimulation.
    Djupesland G; Flottorp G; Sundby A
    Audiology; 1977; 16(4):355-64. PubMed ID: 883915
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Directionality of sound perception in the external ear of the dog].
    Gorlinskiĭ IA; Babushina ES
    Biofizika; 1985; 30(1):133-6. PubMed ID: 3978135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The location-dependent nature of perceptually salient features of the human head-related transfer functions.
    Carlille S; Pralong D
    J Acoust Soc Am; 1994 Jun; 95(6):3445-59. PubMed ID: 8046137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An experimental technique for determining middle ear impedance.
    Blayney AW; McAvoy GJ; Rice HJ; Williams KR
    Acta Otolaryngol; 1996 Mar; 116(2):201-4. PubMed ID: 8725514
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Changes in the auditory threshold for air and bone conduction in relation to middle ear pressure in probands with normal hearing].
    Maier W; Ross UH
    Laryngorhinootologie; 1995 Sep; 74(9):525-30. PubMed ID: 7495432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Progress in neurophysiology of sound localization.
    Phillips DP; Brugge JF
    Annu Rev Psychol; 1985; 36():245-74. PubMed ID: 3883890
    [No Abstract]   [Full Text] [Related]  

  • 60. Gain affected by the interior shape of the ear canal.
    Yu JF; Chen YS; Cheng WD
    Otolaryngol Head Neck Surg; 2011 Jun; 144(6):945-9. PubMed ID: 21493344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.