These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8184929)

  • 1. Effects of regional inhibition of nitric oxide synthesis in intact porcine hearts.
    Kirkebøen KA; Naess PA; Offstad J; Ilebekk A
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1516-27. PubMed ID: 8184929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on the effects of endogenous nitric oxide on coronary blood flow, myocardial oxygen extraction and cardiac contractility.
    Okubo T; Suto N; Kudo S; Hanada H; Mikuniya A; Okumura K
    Fundam Clin Pharmacol; 1999; 13(1):34-42. PubMed ID: 10027086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical performance and coronary flow adjustments to changes in workload are not affected by inhibiting nitric oxide production in isolated working rat heart.
    Beresewicz A; Woźniak M
    Pol J Pharmacol; 1993; 45(5-6):533-48. PubMed ID: 8012476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endothelium-derived nitric oxide in myocardial reactive hyperemia.
    Yamabe H; Okumura K; Ishizaka H; Tsuchiya T; Yasue H
    Am J Physiol; 1992 Jul; 263(1 Pt 2):H8-14. PubMed ID: 1636774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans.
    Lefroy DC; Crake T; Uren NG; Davies GJ; Maseri A
    Circulation; 1993 Jul; 88(1):43-54. PubMed ID: 8319355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L-NMMA and L-NNA on the selective ATP-induced enhancement of intratumoral blood flow.
    Natori Y; Moriguchi M; Fujiwara S; Takeshita I; Fukui M; Iwaki T; Kanaide H
    J Cereb Blood Flow Metab; 1992 Jan; 12(1):120-7. PubMed ID: 1727133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous basal nitric oxide production does not control myocardial oxygen consumption or function.
    Sadoff JD; Scholz PM; Weiss HR
    Proc Soc Exp Biol Med; 1996 Apr; 211(4):332-8. PubMed ID: 8618938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide regulates coronary blood flow at various coronary arterial pressures in intact porcine hearts.
    Offstad J; Naess PA; Aksnes G; Tønnessen T; Ilebekk A; Kirkebøen KA
    Acta Physiol Scand; 1995 Jun; 154(2):93-102. PubMed ID: 7572225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of endothelium-derived nitric oxide and adenosine in functional myocardial hyperemia.
    Maekawa K; Saito D; Obayashi N; Uchida S; Haraoka S
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H166-73. PubMed ID: 8048581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of renal nitric oxide synthesis with NG-monomethyl-L-arginine and NG-nitro-L-arginine.
    Naess PA; Kirkebøen KA; Christensen G; Kiil F
    Am J Physiol; 1992 Jun; 262(6 Pt 2):F939-42. PubMed ID: 1535755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of a role for compounds derived from arginine in coronary response to serotonin in vivo.
    Cappelli-Bigazzi M; Nuno DW; Lamping KG
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H404-9. PubMed ID: 1877667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibition of nitric oxide formation on regional blood flow in experimental myocardial infarction.
    Drexler H; Hablawetz E; Lu W; Riede U; Christes A
    Circulation; 1992 Jul; 86(1):255-62. PubMed ID: 1617777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/release in anesthetized dogs.
    Klabunde RE; Ritger RC; Helgren MC
    Eur J Pharmacol; 1991 Jun; 199(1):51-9. PubMed ID: 1893927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous nitric oxide and myocardial adaptation to ischemia.
    Heusch G; Post H; Michel MC; Kelm M; Schulz R
    Circ Res; 2000 Jul; 87(2):146-52. PubMed ID: 10903999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nitric oxide synthase inhibition on myocardial capillary permeability and reactive hyperaemic response.
    Hansen PR; Haunsø S
    Cardiovasc Res; 1995 Jun; 29(6):862-6. PubMed ID: 7544690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase inhibitors do not alter functional hyperemia in canine skeletal muscle.
    Barclay JK; Woodley NE
    Can J Physiol Pharmacol; 1994 Sep; 72(9):1035-41. PubMed ID: 7531112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of adenosine in regulation of coronary flow in dogs with inhibited synthesis of endothelium-derived nitric oxide.
    Matsunaga T; Okumura K; Tsunoda R; Tayama S; Tabuchi T; Yasue H
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H427-34. PubMed ID: 8779816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of endothelium-derived relaxing factor on coronary blood flow regulation in the dog.
    Domenech R; Macho P; Penna M; Schwarze H; Huidobro-Toro JP; Thumala A
    Eur J Pharmacol; 1993 Jul; 238(1):53-8. PubMed ID: 8405082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.