These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 8185236)
1. Cellular oxygen sensors. Acker H Ann N Y Acad Sci; 1994 Apr; 718():3-10; discussion 11-2. PubMed ID: 8185236 [No Abstract] [Full Text] [Related]
2. Oxygen sensing in the carotid body: ideas and models. Acker H Adv Exp Med Biol; 1994; 360():21-7. PubMed ID: 7872089 [No Abstract] [Full Text] [Related]
3. Ionic channels in type I carotid body cells. Peers C Adv Exp Med Biol; 1994; 360():29-40. PubMed ID: 7532905 [No Abstract] [Full Text] [Related]
4. Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body. Cross AR; Henderson L; Jones OT; Delpiano MA; Hentschel J; Acker H Biochem J; 1990 Dec; 272(3):743-7. PubMed ID: 2268299 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms and meaning of cellular oxygen sensing in the organism. Acker H Respir Physiol; 1994 Jan; 95(1):1-10. PubMed ID: 8153448 [TBL] [Abstract][Full Text] [Related]
7. Oxygen-sensitive ion channels: how ubiquitous are they? López-Barneo J Trends Neurosci; 1994 Apr; 17(4):133-5. PubMed ID: 7517587 [No Abstract] [Full Text] [Related]
8. Oxygen sensing in the kidney and its relation to erythropoietin production. Bauer C; Kurtz A Annu Rev Physiol; 1989; 51():845-56. PubMed ID: 2653209 [No Abstract] [Full Text] [Related]
9. Are oxygen dependent K+ channels essential for carotid body chemo-transduction? Donnelly DF Respir Physiol; 1997 Nov; 110(2-3):211-8. PubMed ID: 9407613 [TBL] [Abstract][Full Text] [Related]
14. Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations. Conde SV; Monteiro EC Adv Exp Med Biol; 2006; 580():179-84; discussion 351-9. PubMed ID: 16683716 [No Abstract] [Full Text] [Related]
15. Molecular identification of Kvalpha subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body. Sanchez D; López-López JR; Pérez-García MT; Sanz-Alfayate G; Obeso A; Ganfornina MD; Gonzalez C J Physiol; 2002 Jul; 542(Pt 2):369-82. PubMed ID: 12122138 [TBL] [Abstract][Full Text] [Related]
16. Proceedings of the XIVth International Symposium on Arterial Chemoreception. June 24-28, 1999, Philadelphia, Pennsylvania, USA. Adv Exp Med Biol; 2000; 475():1-839. PubMed ID: 11023432 [No Abstract] [Full Text] [Related]
17. NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells. Obeso A; Gómez-Niño A; Gonzalez C Am J Physiol; 1999 Mar; 276(3):C593-601. PubMed ID: 10069986 [TBL] [Abstract][Full Text] [Related]
18. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Prabhakar NR Exp Physiol; 2006 Jan; 91(1):17-23. PubMed ID: 16239252 [TBL] [Abstract][Full Text] [Related]
19. O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Wyatt CN; Wright C; Bee D; Peers C Proc Natl Acad Sci U S A; 1995 Jan; 92(1):295-9. PubMed ID: 7529413 [TBL] [Abstract][Full Text] [Related]
20. Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension. Ganfornina MD; López-Barneo J Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2927-30. PubMed ID: 2011601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]