These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 8185446)
1. Biomechanics of wheelchair propulsion by able-bodied subjects. Ruggles DL; Cahalan T; An KN Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446 [TBL] [Abstract][Full Text] [Related]
2. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface. Hughes CJ; Weimar WH; Sheth PN; Brubaker CE Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431 [TBL] [Abstract][Full Text] [Related]
3. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion. de Groot S; Veeger HE; Hollander AP; van der Woude LH Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003 [TBL] [Abstract][Full Text] [Related]
4. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds. Richter WM; Rodriguez R; Woods KR; Axelson PW Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680 [TBL] [Abstract][Full Text] [Related]
5. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. de Groot S; de Bruin M; Noomen SP; van der Woude LH Clin Biomech (Bristol); 2008 May; 23(4):434-41. PubMed ID: 18077065 [TBL] [Abstract][Full Text] [Related]
6. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output. Hintzy F; Tordi N Clin Biomech (Bristol); 2004 May; 19(4):343-9. PubMed ID: 15109753 [TBL] [Abstract][Full Text] [Related]
7. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Veeger HE; van der Woude LH; Rozendal RH Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983 [TBL] [Abstract][Full Text] [Related]
8. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion. Patterson P; Draper S Biomed Sci Instrum; 1997; 33():477-81. PubMed ID: 9731406 [TBL] [Abstract][Full Text] [Related]
9. A computerized wheelchair ergometer. Results of a comparison study. Veeger HE; van der Woude LH; Rozendal RH Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258 [TBL] [Abstract][Full Text] [Related]
10. Biomechanics of wheelchair propulsion during fatigue. Rodgers MM; Gayle GW; Figoni SF; Kobayashi M; Lieh J; Glaser RM Arch Phys Med Rehabil; 1994 Jan; 75(1):85-93. PubMed ID: 8291970 [TBL] [Abstract][Full Text] [Related]
11. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis. Guo LY; Su FC; An KN Clin Biomech (Bristol); 2006 Feb; 21(2):107-15. PubMed ID: 16226359 [TBL] [Abstract][Full Text] [Related]
12. A wheelchair ergometer with a device for isokinetic torque measurement. Samuelsson K; Larsson H; Tropp H Scand J Rehabil Med; 1989; 21(4):205-8. PubMed ID: 2631195 [TBL] [Abstract][Full Text] [Related]
13. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia. Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997 [TBL] [Abstract][Full Text] [Related]
14. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach. Dubowsky SR; Sisto SA; Langrana NA J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574 [TBL] [Abstract][Full Text] [Related]
15. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study. Theisen D; Francaux M; Fayt A; Sturbois X Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976 [TBL] [Abstract][Full Text] [Related]
16. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094 [TBL] [Abstract][Full Text] [Related]
17. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects. Roux L; Hanneton S; Roby-Brami A Clin Biomech (Bristol); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903 [TBL] [Abstract][Full Text] [Related]
18. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users. Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390 [TBL] [Abstract][Full Text] [Related]
19. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion. Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217 [TBL] [Abstract][Full Text] [Related]
20. Effect of workload setting on propulsion technique in handrim wheelchair propulsion. van Drongelen S; Arnet U; Veeger DH; van der Woude LH Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]