BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8186243)

  • 1. Isotope effects on the mechanism of calcineurin catalysis: kinetic solvent isotope and isotope exchange studies.
    Martin BL; Graves DJ
    Biochim Biophys Acta; 1994 May; 1206(1):136-42. PubMed ID: 8186243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+.
    Hengge AC; Martin BL
    Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcineurin-catalyzed reaction with phosphite and phosphate esters of tyrosine.
    Wang H; Graves DJ
    Biochemistry; 1991 Mar; 30(12):3019-24. PubMed ID: 1848782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 19F nuclear magnetic resonance to examine covalent modification reactions of tyrosyl derivatives: a study of calcineurin catalysis.
    Martin BL; Graves DJ
    Anal Biochem; 1988 Apr; 170(1):152-60. PubMed ID: 2839051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic aspects of the low-molecular-weight phosphatase activity of the calmodulin-activated phosphatase, calcineurin.
    Martin BL; Graves DJ
    J Biol Chem; 1986 Nov; 261(31):14545-50. PubMed ID: 3771542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of amide proton exchange rates and NOEs with water in 13C/15N-enriched calcineurin B.
    Grzesiek S; Bax A
    J Biomol NMR; 1993 Nov; 3(6):627-38. PubMed ID: 8111229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.
    Huang TM; Hung HC; Chang TC; Chang GG
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):267-75. PubMed ID: 9461520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary crystallization studies of calmodulin-dependent protein phosphatase (calcineurin) from bovine brain.
    Balendiran K; Tan Y; Sharma RK; Murthy KH
    Mol Cell Biochem; 1995; 149-150():127-30. PubMed ID: 8569721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase.
    Mertz P; Yu L; Sikkink R; Rusnak F
    J Biol Chem; 1997 Aug; 272(34):21296-302. PubMed ID: 9261141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of trifluoroethyl phosphate as evidence that the serine and tyrosine phosphatase activities of calcineurin share the same specificity determinant.
    Martin BL; Graves DJ
    Biochem Biophys Res Commun; 1993 Jul; 194(1):150-6. PubMed ID: 8392834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and enzymatic characterization of the active site dinuclear metal center of calcineurin: implications for a mechanistic role.
    Yu L; Golbeck J; Yao J; Rusnak F
    Biochemistry; 1997 Sep; 36(35):10727-34. PubMed ID: 9271503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude of intrinsic isotope effects in the dopamine beta-monooxygenase reaction.
    Miller SM; Klinman JP
    Biochemistry; 1983 Jun; 22(13):3091-6. PubMed ID: 6882738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent isotope effects for lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters.
    Quinn DM
    Biochemistry; 1985 Jun; 24(13):3144-9. PubMed ID: 4027237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the transition-state structure of dual-specificity protein phosphatases using a physiological substrate mimic.
    Grzyska PK; Kim Y; Jackson MD; Hengge AC; Denu JM
    Biochemistry; 2004 Jul; 43(27):8807-14. PubMed ID: 15236589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center.
    Mondragon A; Griffith EC; Sun L; Xiong F; Armstrong C; Liu JO
    Biochemistry; 1997 Apr; 36(16):4934-42. PubMed ID: 9125515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaving group dependence and proton inventory studies of the phosphorylation of a cytoplasmic phosphotyrosyl protein phosphatase from bovine heart.
    Zhang ZY; Van Etten RL
    Biochemistry; 1991 Sep; 30(37):8954-9. PubMed ID: 1654080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.