These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8186405)

  • 1. Mechanical compression of small coronary vessels during the cardiac cycle.
    Oddou C; Razakamiadana A
    Biorheology; 1993; 30(5-6):387-96. PubMed ID: 8186405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogenization modeling for the mechanics of perfused myocardium.
    May-Newman K; McCulloch AD
    Prog Biophys Mol Biol; 1998; 69(2-3):463-81. PubMed ID: 9785951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-talk between cardiac muscle and coronary vasculature.
    Westerhof N; Boer C; Lamberts RR; Sipkema P
    Physiol Rev; 2006 Oct; 86(4):1263-308. PubMed ID: 17015490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for the vessel recruitment in coronary microcirculation in the absence of active autoregulation.
    Saracco A; Bauckneht M; Verna E; Ghiringhelli S; Repetto R; Sambuceti G; Provasoli S; Storace M
    Microvasc Res; 2016 Mar; 104():38-45. PubMed ID: 26638880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression of intramyocardial arterioles during cardiac contraction is attenuated by accompanying venules.
    Vis MA; Sipkema P; Westerhof N
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H1003-11. PubMed ID: 9277521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-flow relations in coronary circulation.
    Hoffman JI; Spaan JA
    Physiol Rev; 1990 Apr; 70(2):331-90. PubMed ID: 2181499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data.
    Kassab GS; Le KN; Fung YC
    Am J Physiol; 1999 Dec; 277(6):H2158-66. PubMed ID: 10600833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary microcirculation in the beating heart.
    Kajiya F; Yada T; Hiramatsu O; Ogasawara Y; Inai Y; Kajiya M
    Med Biol Eng Comput; 2008 May; 46(5):411-9. PubMed ID: 18365262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow velocity is relatively uniform in the coronary sinusal venous tree: structure-function relation.
    Wu H; Kassab GS; Tan W; Huo Y
    J Appl Physiol (1985); 2017 Jan; 122(1):60-67. PubMed ID: 27789767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling pressure-flow relations in cardiac muscle in diastole and systole.
    Vis MA; Sipkema P; Westerhof N
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1516-26. PubMed ID: 9087630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between intramyocardial pressure (IMP) and myocardial circulation.
    Arts T; Reneman RS
    J Biomech Eng; 1985 Feb; 107(1):51-6. PubMed ID: 3981986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall.
    Vis MA; Bovendeerd PH; Sipkema P; Westerhof N
    Am J Physiol; 1997 Jun; 272(6 Pt 2):H2963-75. PubMed ID: 9227575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle.
    Ashikawa K; Kanatsuka H; Suzuki T; Takishima T
    Circ Res; 1986 Dec; 59(6):704-11. PubMed ID: 3815760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation.
    Kuo L; Davis MJ; Chilian WM
    Circulation; 1995 Aug; 92(3):518-25. PubMed ID: 7543382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics.
    Chilian WM; Eastham CL; Layne SM; Marcus ML
    Prog Cardiovasc Dis; 1988; 31(1):17-38. PubMed ID: 3293118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow.
    Mills I; Fallon JT; Wrenn D; Sasken H; Gray W; Bier J; Levine D; Berman S; Gilson M; Gewirtz H
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H447-57. PubMed ID: 8141345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree.
    Huo Y; Kassab GS
    J Appl Physiol (1985); 2009 Aug; 107(2):500-5. PubMed ID: 19541733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave intensity analysis in the human coronary circulation in health and disease.
    Sen S; Petraco R; Mayet J; Davies J
    Curr Cardiol Rev; 2014 Feb; 10(1):17-23. PubMed ID: 23642024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.