These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8186410)

  • 21. Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity.
    Cloutier G; Qin Z; Garcia D; Soulez G; Oliva V; Durand LG
    Ultrasound Med Biol; 2000 Nov; 26(9):1489-501. PubMed ID: 11179623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical variations of ultrasound signals backscattered from flowing blood.
    Huang CC; Wang SH
    Ultrasound Med Biol; 2007 Dec; 33(12):1943-54. PubMed ID: 17673357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic variation of Doppler power from whole blood under pulsatile flow.
    Wu SJ; Shung KK
    Ultrasound Med Biol; 1996; 22(7):883-94. PubMed ID: 8923707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL; Quemada D
    Biorheology; 2001; 38(1):27-38. PubMed ID: 11381163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation.
    Qin Z; Durand LG; Cloutier G
    Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
    Huang CC; Chang YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation of red blood cell aggregation in shear flow.
    Lim B; Bascom PA; Cobbold RS
    Biorheology; 1997; 34(6):423-41. PubMed ID: 9640357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulations of pulsatile blood flow using a new constitutive model.
    Fang J; Owens RG
    Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High spatial and temporal resolution observations of pulsatile changes in blood echogenicity in the common carotid artery of rats.
    Nam KH; Bok TH; Kong Q; Paeng DG
    Ultrasound Med Biol; 2013 Sep; 39(9):1665-71. PubMed ID: 23830099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in ultrasonic Doppler backscattered power downstream of concentric and eccentric stenoses under pulsatile flow.
    Cloutier G; Allard L; Durand LG
    Ultrasound Med Biol; 1995; 21(1):59-70. PubMed ID: 7538706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound.
    Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA
    J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A computer simulation model for Doppler ultrasound signals from pulsatile blood flow in stenosed vessels.
    Gao L; Zhang Y; Zhang K; Cai G; Zhang J; Shi X
    Comput Biol Med; 2012 Sep; 42(9):906-14. PubMed ID: 22841363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of hemodynamics, vessel wall compliance and hematocrit on ultrasonic Doppler power: an in vitro study.
    Missaridis TX; Shung KK
    Ultrasound Med Biol; 1999 May; 25(4):549-59. PubMed ID: 10386730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The derivation of theoretical ultrasonic Doppler blood flow spectrum.
    Güler NF; Ozer S
    J Med Syst; 1998 Oct; 22(5):301-13. PubMed ID: 9809271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation effects in whole blood: influence of time and shear rate measured using ultrasound.
    Shehada RE; Cobbold RS; Mo LY
    Biorheology; 1994; 31(1):115-35. PubMed ID: 8173041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheological and flow properties of blood investigated by ultrasound.
    Boynard M; Haider L; Lardoux H; Snabre P
    Indian J Exp Biol; 2007 Jan; 45(1):18-24. PubMed ID: 17249323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro estimation of red blood cells' aggregation using ultrasound Doppler techniques.
    Aggelopoulos EG; Karabetsos E; Koutsouris D
    Clin Hemorheol Microcirc; 1997; 17(2):107-15. PubMed ID: 9255434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.