BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8186962)

  • 1. Effective use of a neurotrophic ACTH4-9 analogue in the treatment of a peripheral demyelinating syndrome (experimental allergic neuritis). An intervention study.
    Duckers HJ; Verhaagen J; de Bruijn E; Gispen WH
    Brain; 1994 Apr; 117 ( Pt 2)():365-74. PubMed ID: 8186962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurotrophic analogue of ACTH(4-9), Org 2766, protects against experimental allergic neuritis.
    Duckers HJ; Verhaagen J; Gispen WH
    Brain; 1993 Oct; 116 ( Pt 5)():1059-75. PubMed ID: 8221047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neurotrophic analogue of ACTH4-9 protects against experimental allergic neuritis.
    Duckers HJ; Verhaagen J; Gispen WH
    Ann N Y Acad Sci; 1993 May; 680():493-5. PubMed ID: 8390175
    [No Abstract]   [Full Text] [Related]  

  • 4. Effective treatment of experimental autoimmune neuritis with human immunoglobulin.
    Lin HH; Spies JM; Lu JL; Pollard JD
    J Neurol Sci; 2007 May; 256(1-2):61-7. PubMed ID: 17379248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis.
    Lonigro A; Devaux JJ
    Brain; 2009 Jan; 132(Pt 1):260-73. PubMed ID: 18953054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation and development of experimental autoimmune neuritis in Lewis rats is independent of the cytotoxic capacity of NKR-P1A+ cells.
    Yu S; Zhu Y; Chen Z; Alheim M; Ljungberg A; Zhu J
    J Neurosci Res; 2002 Mar; 67(6):823-8. PubMed ID: 11891797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of experimental autoimmune neuritis by nasal administration of P2 protein peptide 57-81.
    Zhu J; Deng GM; Levi M; Wahren B; Diab A; van der Meide PH; Link H
    J Neuropathol Exp Neurol; 1998 Mar; 57(3):291-301. PubMed ID: 9600221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-derived neurotrophic factor in experimental autoimmune neuritis.
    Felts PA; Smith KJ; Gregson NA; Hughes RA
    J Neuroimmunol; 2002 Mar; 124(1-2):62-9. PubMed ID: 11958823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses.
    Xiao J; Zhai H; Yao Y; Wang C; Jiang W; Zhang C; Simard AR; Zhang R; Hao J
    Neuroscience; 2014 Mar; 262():156-64. PubMed ID: 24412705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotrophic ACTH4-9 analogue therapy normalizes electroencephalographic alterations in chronic experimental allergic encephalomyelitis.
    Duckers HJ; van Dokkum RP; Verhaagen J; van Luijtelaar EL; Coenen AM; Lopes da Silva FH; Gispen WH
    Eur J Neurosci; 1998 Dec; 10(12):3709-20. PubMed ID: 9875350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of monoamine reuptake inhibiting antidepressants in experimental allergic neuritis.
    Zhu J; Mix E; Bengtsson BO; Link H
    J Peripher Nerv Syst; 1997; 2(1):30-42. PubMed ID: 10975734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the Guillain-Barré syndrome.
    Kieseier BC; Clements JM; Pischel HB; Wells GM; Miller K; Gearing AJ; Hartung HP
    Ann Neurol; 1998 Apr; 43(4):427-34. PubMed ID: 9546322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing T
    Liu H; Wan C; Ding Y; Han R; He Y; Xiao J; Hao J
    FASEB J; 2017 Apr; 31(4):1756-1766. PubMed ID: 28096232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Brain-Derived Neurotrophic Factor-Based p75
    Gonsalvez DG; Tran G; Fletcher JL; Hughes RA; Hodgkinson S; Wood RJ; Yoo SW; De Silva M; Agnes WW; McLean C; Kennedy P; Kilpatrick TJ; Murray SS; Xiao J
    eNeuro; 2017; 4(3):. PubMed ID: 28680965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis.
    Liu RT; Zhang M; Yang CL; Zhang P; Zhang N; Du T; Ge MR; Yue LT; Li XL; Li H; Duan RS
    J Neuroinflammation; 2018 Feb; 15(1):51. PubMed ID: 29467007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-α in Guillain-Barré syndrome, friend or foe?
    Wang Y; Zhang J; Luo P; Zhu J; Feng J; Zhang HL
    Expert Opin Ther Targets; 2017 Jan; 21(1):103-112. PubMed ID: 27817222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCR5 deficiency does not prevent P0 peptide 180-199 immunized mice from experimental autoimmune neuritis.
    Duan RS; Chen Z; Bao L; Quezada HC; Nennesmo I; Winblad B; Zhu J
    Neurobiol Dis; 2004 Aug; 16(3):630-7. PubMed ID: 15262275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological changes in demyelinating and axonal forms of acute experimental autoimmune neuritis in the Lewis rat.
    Taylor JM; Pollard JD
    Muscle Nerve; 2003 Sep; 28(3):344-52. PubMed ID: 12929195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages.
    Han R; Xiao J; Zhai H; Hao J
    J Neuroinflammation; 2016 May; 13(1):97. PubMed ID: 27142843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAD001 (everolimus) attenuates experimental autoimmune neuritis by inhibiting the mTOR pathway, elevating Akt activity and polarizing M2 macrophages.
    Han R; Gao J; Zhai H; Xiao J; Ding Y; Hao J
    Exp Neurol; 2016 Jun; 280():106-14. PubMed ID: 27063582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.