These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8187275)

  • 1. Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43.
    Ek JF; Delmar M; Perzova R; Taffet SM
    Circ Res; 1994 Jun; 74(6):1058-64. PubMed ID: 8187275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 17mer peptide interferes with acidification-induced uncoupling of connexin43.
    Calero G; Kanemitsu M; Taffet SM; Lau AF; Delmar M
    Circ Res; 1998 May; 82(9):929-35. PubMed ID: 9598590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length.
    Liu S; Taffet S; Stoner L; Delmar M; Vallano ML; Jalife J
    Biophys J; 1993 May; 64(5):1422-33. PubMed ID: 8391867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular interactions mediate pH regulation of connexin43 channels.
    Morley GE; Taffet SM; Delmar M
    Biophys J; 1996 Mar; 70(3):1294-302. PubMed ID: 8785285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PH regulation of connexin43: molecular analysis of the gating particle.
    Ek-Vitorín JF; Calero G; Morley GE; Coombs W; Taffet SM; Delmar M
    Biophys J; 1996 Sep; 71(3):1273-84. PubMed ID: 8874002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A particle-receptor model for the insulin-induced closure of connexin43 channels.
    Homma N; Alvarado JL; Coombs W; Stergiopoulos K; Taffet SM; Lau AF; Delmar M
    Circ Res; 1998 Jul; 83(1):27-32. PubMed ID: 9670915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalization and expression of functional and nonfunctional cell-to-cell channels from wild-type and mutant rat heart connexin43 cDNA.
    Dunham B; Liu S; Taffet S; Trabka-Janik E; Delmar M; Petryshyn R; Zheng S; Perzova R; Vallano ML
    Circ Res; 1992 Jun; 70(6):1233-43. PubMed ID: 1315637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue.
    Wang C; Lamb RA; Pinto LH
    Biophys J; 1995 Oct; 69(4):1363-71. PubMed ID: 8534806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-calmodulin gating of a pH-insensitive isoform of connexin43 gap junctions.
    Wei S; Cassara C; Lin X; Veenstra RD
    Biochem J; 2019 Apr; 476(7):1137-1148. PubMed ID: 30910801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The highly conserved Gln49 and Ser50 of mammalian connexin43 are present in chick connexin43 and essential for functional gap junction channels.
    Sokolova IV; Martinez AM; Fletcher WH
    Cell Commun Adhes; 2002; 9(2):75-86. PubMed ID: 12487409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating.
    Moreno AP; Chanson M; Elenes S; Anumonwo J; Scerri I; Gu H; Taffet SM; Delmar M
    Circ Res; 2002 Mar; 90(4):450-7. PubMed ID: 11884375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connexin diversity and gap junction regulation by pHi.
    Francis D; Stergiopoulos K; Ek-Vitorín JF; Cao FL; Taffet SM; Delmar M
    Dev Genet; 1999; 24(1-2):123-36. PubMed ID: 10079516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions.
    Revilla A; Castro C; Barrio LC
    Biophys J; 1999 Sep; 77(3):1374-83. PubMed ID: 10465749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional formation of heterotypic gap junction channels by connexins-40 and -43.
    Lin X; Xu Q; Veenstra RD
    Channels (Austin); 2014; 8(5):433-43. PubMed ID: 25483586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of a basic COOH-terminal domain of Cx32 that inhibits gap junction gating sensitivity.
    Wang XG; Peracchia C
    Am J Physiol; 1998 Nov; 275(5):C1384-90. PubMed ID: 9814988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels.
    Zhou L; Kasperek EM; Nicholson BJ
    J Cell Biol; 1999 Mar; 144(5):1033-45. PubMed ID: 10085299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels.
    Shibayama J; Gutiérrez C; González D; Kieken F; Seki A; Carrión JR; Sorgen PL; Taffet SM; Barrio LC; Delmar M
    Biophys J; 2006 Dec; 91(11):4054-63. PubMed ID: 16963503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of connexins 40 and 43 enhances the pH sensitivity of gap junctions: a model for synergistic interactions among connexins.
    Gu H; Ek-Vitorin JF; Taffet SM; Delmar M
    Circ Res; 2000 May; 86(10):E98-E103. PubMed ID: 10827142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions.
    Musa H; Fenn E; Crye M; Gemel J; Beyer EC; Veenstra RD
    J Physiol; 2004 Jun; 557(Pt 3):863-78. PubMed ID: 15107469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels.
    Deng Y; Chen Y; Reuss L; Altenberg GA
    Hear Res; 2006 Oct; 220(1-2):87-94. PubMed ID: 16945493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.