These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 8187697)
21. In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models. Reitz RH; Mendrala AL; Guengerich FP Toxicol Appl Pharmacol; 1989 Feb; 97(2):230-46. PubMed ID: 2922756 [TBL] [Abstract][Full Text] [Related]
22. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity. Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568 [TBL] [Abstract][Full Text] [Related]
23. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Kirman CR; Sweeney LM; Corley R; Gargas ML Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203 [TBL] [Abstract][Full Text] [Related]
24. Assessing the dose-dependency of allometric scaling performance using physiologically based pharmacokinetic modeling. Kirman CR; Sweeney LM; Meek ME; Gargas ML Regul Toxicol Pharmacol; 2003 Dec; 38(3):345-67. PubMed ID: 14623485 [TBL] [Abstract][Full Text] [Related]
25. Application of a hybrid CFD-PBPK nasal dosimetry model in an inhalation risk assessment: an example with acrylic acid. Andersen M; Sarangapani R; Gentry R; Clewell H; Covington T; Frederick CB Toxicol Sci; 2000 Oct; 57(2):312-25. PubMed ID: 11006361 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice. Evans MV; Caldwell JC Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349 [TBL] [Abstract][Full Text] [Related]
27. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture. Pelekis M; Krishnan K Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503 [TBL] [Abstract][Full Text] [Related]
28. Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment. Krishnan K; Johanson G J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2005; 23(1):31-53. PubMed ID: 16291521 [TBL] [Abstract][Full Text] [Related]
29. A simple index for representing the discrepancy between simulations of physiological pharmacokinetic models and experimental data. Krishnan K; Haddad S; Pelekis M Toxicol Ind Health; 1995; 11(4):413-22. PubMed ID: 8748422 [TBL] [Abstract][Full Text] [Related]
30. Physiologically-based pharmacokinetic models in risk and exposure assessment. Blancato JN Ann Ist Super Sanita; 1991; 27(4):601-8. PubMed ID: 1820732 [TBL] [Abstract][Full Text] [Related]
31. Application of in vitro biotransformation data and pharmacokinetic modeling to risk assessment. Kedderis GL; Lipscomb JC Toxicol Ind Health; 2001 Jun; 17(5-10):315-21. PubMed ID: 12539878 [TBL] [Abstract][Full Text] [Related]
32. PBPK modeling/Monte Carlo simulation of methylene chloride kinetic changes in mice in relation to age and acute, subchronic, and chronic inhalation exposure. Thomas RS; Yang RS; Morgan DG; Moorman MP; Kermani HR; Sloane RA; O'Connor RW; Adkins B; Gargas ML; Andersen ME Environ Health Perspect; 1996 Aug; 104(8):858-65. PubMed ID: 8875160 [TBL] [Abstract][Full Text] [Related]
33. An introduction to the use of physiologically based pharmacokinetic models in risk assessment. Bailer AJ; Dankovic DA Stat Methods Med Res; 1997 Dec; 6(4):341-58. PubMed ID: 9447653 [TBL] [Abstract][Full Text] [Related]
34. Combining transcriptomics and PBPK modeling indicates a primary role of hypoxia and altered circadian signaling in dichloromethane carcinogenicity in mouse lung and liver. Andersen ME; Black MB; Campbell JL; Pendse SN; Clewell HJ; Pottenger LH; Bus JS; Dodd DE; Kemp DC; McMullen PD Toxicol Appl Pharmacol; 2017 Oct; 332():149-158. PubMed ID: 28392392 [TBL] [Abstract][Full Text] [Related]
35. Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. Lipscomb JC; Haddad S; Poet T; Krishnan K Adv Exp Med Biol; 2012; 745():76-95. PubMed ID: 22437814 [TBL] [Abstract][Full Text] [Related]
36. Physiologically based pharmacokinetic analyses of simple mixtures. Krishnan K; Clewell HJ; Andersen ME Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):151-5. PubMed ID: 7698076 [TBL] [Abstract][Full Text] [Related]
37. Predicting cancer risk from vinyl chloride exposure with a physiologically based pharmacokinetic model. Reitz RH; Gargas ML; Andersen ME; Provan WM; Green TL Toxicol Appl Pharmacol; 1996 Apr; 137(2):253-67. PubMed ID: 8661351 [TBL] [Abstract][Full Text] [Related]
38. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Andersen ME; Clewell HJ; Gargas ML; Smith FA; Reitz RH Toxicol Appl Pharmacol; 1987 Feb; 87(2):185-205. PubMed ID: 3824380 [TBL] [Abstract][Full Text] [Related]
39. Workshop overview: reassessment of the cancer risk of dichloromethane in humans. Starr TB; Matanoski G; Anders MW; Andersen ME Toxicol Sci; 2006 May; 91(1):20-8. PubMed ID: 16507920 [TBL] [Abstract][Full Text] [Related]
40. Toxicokinetic modeling and its applications in chemical risk assessment. Andersen ME Toxicol Lett; 2003 Feb; 138(1-2):9-27. PubMed ID: 12559690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]