These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 8187868)
1. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. Sazanov LA; Jackson JB FEBS Lett; 1994 May; 344(2-3):109-16. PubMed ID: 8187868 [TBL] [Abstract][Full Text] [Related]
2. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. Armingol E; Tobar E; Cabrera R PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222 [TBL] [Abstract][Full Text] [Related]
3. Fiber-type-related differences in the enzymes of a proposed substrate cycle. Howlett RA; Willis WT Biochim Biophys Acta; 1998 Mar; 1363(3):224-30. PubMed ID: 9518625 [TBL] [Abstract][Full Text] [Related]
4. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria. Moyle J; Mitchell P Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799 [TBL] [Abstract][Full Text] [Related]
5. Possible functions of the NADP-linked isocitrate dehydrogenase and H(+)-transhydrogenase in heart mitochondria. Sazanov LA; Jackson JB Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):260S. PubMed ID: 8224412 [No Abstract] [Full Text] [Related]
6. Reverse flux through cardiac NADP(+)-isocitrate dehydrogenase under normoxia and ischemia. Comte B; Vincent G; Bouchard B; Benderdour M; Des Rosiers C Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1505-14. PubMed ID: 12234803 [TBL] [Abstract][Full Text] [Related]
7. Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria. Studies with D-threo-alpha-methylisocitrate. Smith CM; Plaut GW Eur J Biochem; 1979 Jun; 97(1):283-95. PubMed ID: 38961 [TBL] [Abstract][Full Text] [Related]
8. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Igamberdiev AU; Gardeström P Biochim Biophys Acta; 2003 Sep; 1606(1-3):117-25. PubMed ID: 14507432 [TBL] [Abstract][Full Text] [Related]
9. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317 [TBL] [Abstract][Full Text] [Related]
10. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
11. [Changes in the activities of NAD- and NADP-specific isocitrate dehydrogenases in the brain and liver during the postembryonic development of animals]. Prokhorova MI; Putilina FE; Eshchenko ND Vopr Biokhim Mozga; 1974; 9():211-8. PubMed ID: 4157232 [TBL] [Abstract][Full Text] [Related]
12. Isocitrate dehydrogenase activity and its regulation by estradiol in tissues of rats of various ages. Yadav RN Cell Biochem Funct; 1988 Jul; 6(3):197-202. PubMed ID: 3409480 [TBL] [Abstract][Full Text] [Related]
13. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens. Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449 [TBL] [Abstract][Full Text] [Related]
14. Purification of Adult Fu Q; Ma R; Fioravanti CF J Parasitol; 2019 Apr; 105(2):321-329. PubMed ID: 30998130 [TBL] [Abstract][Full Text] [Related]
15. [Oxidative enzyme activity of the tricarboxylic acid cycle in rat skeletal muscles in hypokinesia]. Ganin IuA Kosm Biol Aviakosm Med; 1982; 16(6):37-41. PubMed ID: 7176503 [TBL] [Abstract][Full Text] [Related]
16. Energy-linked mitochondrial transhydrogenation from NADPH to NADP analogs. Phelps DC; Galante YM; Hatefi Y J Biol Chem; 1980 Oct; 255(20):9647-52. PubMed ID: 7430092 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase: effect of substrates on the sensitivity of the enzyme to trypsin and identification of tryptic cleavage sites. Yamaguchi M; Wakabayashi S; Hatefi Y Biochemistry; 1990 May; 29(17):4136-43. PubMed ID: 2361137 [TBL] [Abstract][Full Text] [Related]
18. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Sauer U; Canonaco F; Heri S; Perrenoud A; Fischer E J Biol Chem; 2004 Feb; 279(8):6613-9. PubMed ID: 14660605 [TBL] [Abstract][Full Text] [Related]
19. The specificity of proton-translocating transhydrogenase for nicotinamide nucleotides. Huxley L; Quirk PG; Cotton NP; White SA; Jackson JB Biochim Biophys Acta; 2011 Jan; 1807(1):85-94. PubMed ID: 20732298 [TBL] [Abstract][Full Text] [Related]
20. Properties of the apo-form of the NADP(H)-binding domain III of proton-pumping Escherichia coli transhydrogenase: implications for the reaction mechanism of the intact enzyme. Pedersen A; Karlsson J; Althage M; Rydström J Biochim Biophys Acta; 2003 Jun; 1604(2):55-9. PubMed ID: 12765762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]