BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8188065)

  • 1. Configuration of light responses in isolated retinal rods. A patch-clamp study.
    Schmidt KF; Nöll GN; Jacobi P; Baumann C
    Graefes Arch Clin Exp Ophthalmol; 1994 Mar; 232(3):153-61. PubMed ID: 8188065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium nitroprusside alters dark voltage and light responses in isolated retinal rods during whole-cell recording.
    Schmidt KF; Nöll GN; Yamamoto Y
    Vis Neurosci; 1992 Aug; 9(2):205-9. PubMed ID: 1354484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of guanine nucleotides on the dark voltage of single frog rods.
    Schmidt KF; Nöll GN; Baumann C
    Vis Neurosci; 1989; 2(2):101-8. PubMed ID: 2562145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intracellularly applied sodium ions on the dark voltage of isolated retinal rods.
    Schmidt KF; Nöll GN; Baumann C
    Vis Neurosci; 1990 Apr; 4(4):331-6. PubMed ID: 2176812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of light, ATP and GTP on the binding of cGMP to rod outer segment membranes in the frog retina. Possible mechanism of receptor stimulation].
    Fesenko EE; Krapivinskiĭ GB
    Dokl Akad Nauk SSSR; 1986; 287(5):1255-9. PubMed ID: 3009122
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of nitric oxide synthase alters light responses and dark voltage of amphibian photoreceptors.
    Nöll GN; Billek M; Pietruck C; Schmidt KF
    Neuropharmacology; 1994 Nov; 33(11):1407-12. PubMed ID: 7532822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast growth factors alter light responses and dark voltage in retinal rods of the frog (Rana temporaria).
    Schmidt KF; Billek M; Pietruck C; Nöll GN; Goureau O; Courtois Y
    Neurosci Lett; 1995 May; 191(3):177-80. PubMed ID: 7543993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ATP, GTP and cAMP on the cGMP-dependent conductance of the fragments from frog rod plasma membrane.
    Filatov GN; Jainazarov AB; Kolesnikov SS; Lyubarsky AL; Fesenko EE
    FEBS Lett; 1989 Mar; 245(1-2):185-8. PubMed ID: 2538357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells.
    Miller JL; Korenbrot JI
    J Gen Physiol; 1994 Nov; 104(5):909-40. PubMed ID: 7876828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverted photocurrent responses from amphibian rod photoreceptors: role of membrane voltage in response recovery.
    Jarvinen JL; Lamb TD
    J Physiol; 2005 Jul; 566(Pt 2):455-66. PubMed ID: 15919708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-arginine and nicotinamide adenine dinucleotide phosphate alter dark voltage and accelerate light response recovery in isolated retinal rods of the frog (Rana temporaria).
    Tsuyama Y; Nöll GN; Schmidt KF
    Neurosci Lett; 1993 Jan; 149(1):95-8. PubMed ID: 8469390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors.
    Coccia VJ; Cote RH
    J Gen Physiol; 1994 Jan; 103(1):67-86. PubMed ID: 8169598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guanosine 3',5'-cyclic monophosphate-activated conductance studied in a truncated rod outer segment of the toad.
    Nakatani K; Yau KW
    J Physiol; 1988 Jan; 395():731-53. PubMed ID: 2457686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and chirality of intracellularly applied anions affect the function of isolated photoreceptors.
    Jacobi P; Schmidt KF; Nöll GN; Baumann C
    Pflugers Arch; 1992 May; 421(1):90-3. PubMed ID: 1630887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability and interaction of Ca2+ with cGMP-gated ion channels differ in retinal rod and cone photoreceptors.
    Picones A; Korenbrot JI
    Biophys J; 1995 Jul; 69(1):120-7. PubMed ID: 7545443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod phototransduction modulated by bicarbonate in the frog retina: roles of carbonic anhydrase and bicarbonate exchange.
    Donner K; Hemilä S; Kalamkarov G; Koskelainen A; Shevchenko T
    J Physiol; 1990 Jul; 426():297-316. PubMed ID: 2172515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.