BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8188654)

  • 1. Fluorescent guanine nucleotide analogs and G protein activation.
    Remmers AE; Posner R; Neubig RR
    J Biol Chem; 1994 May; 269(19):13771-8. PubMed ID: 8188654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial G protein activation by fluorescent guanine nucleotide analogs. Evidence for a triphosphate-bound but inactive state.
    Remmers AE; Neubig RR
    J Biol Chem; 1996 Mar; 271(9):4791-7. PubMed ID: 8617747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantitation of heterotrimeric G proteins by fluorescence resonance energy transfer.
    Remmers AE
    Anal Biochem; 1998 Mar; 257(1):89-94. PubMed ID: 9512777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of guanine nucleotide binding and exchange kinetics of the Escherichia coli GTPase Era.
    Sullivan SM; Mishra R; Neubig RR; Maddock JR
    J Bacteriol; 2000 Jun; 182(12):3460-6. PubMed ID: 10852878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2'(3')-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors.
    Gille A; Seifert R
    J Biol Chem; 2003 Apr; 278(15):12672-9. PubMed ID: 12566433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins).
    Higashijima T; Uzu S; Nakajima T; Ross EM
    J Biol Chem; 1988 May; 263(14):6491-4. PubMed ID: 3129426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of G(o)alpha tryptophans in GTP hydrolysis, GDP release, and fluorescence signals.
    Lan KL; Remmers AE; Neubig RR
    Biochemistry; 1998 Jan; 37(3):837-43. PubMed ID: 9454573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity.
    Higashijima T; Burnier J; Ross EM
    J Biol Chem; 1990 Aug; 265(24):14176-86. PubMed ID: 2117607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides.
    Pisareva VP; Pisarev AV; Hellen CU; Rodnina MV; Pestova TV
    J Biol Chem; 2006 Dec; 281(52):40224-35. PubMed ID: 17062564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of guanine nucleotide binding on the intrinsic tryptophan fluorescence properties of Rab5.
    Pan JY; Sanford JC; Wessling-Resnick M
    J Biol Chem; 1995 Oct; 270(41):24204-8. PubMed ID: 7592625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy.
    Nomanbhoy TK; Cerione R
    J Biol Chem; 1996 Apr; 271(17):10004-9. PubMed ID: 8626553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of the binding of guanine nucleotide to bovine brain smg p25A.
    Shoji I; Kikuchi A; Kuroda S; Takai Y
    Biochem Biophys Res Commun; 1989 Jul; 162(1):273-81. PubMed ID: 2502110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 '(3')-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate.
    Mou TC; Gille A; Fancy DA; Seifert R; Sprang SR
    J Biol Chem; 2005 Feb; 280(8):7253-61. PubMed ID: 15591060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using fluorescence spectroscopy.
    Leonard DA; Evans T; Hart M; Cerione RA; Manor D
    Biochemistry; 1994 Oct; 33(40):12323-8. PubMed ID: 7918454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1994 Apr; 33(15):4682-94. PubMed ID: 8161526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of the interaction between 2',3'-dialdehyde guanine nucleotide analogues and the stimulatory G protein alpha-subunit.
    Hohenegger M; Nanoff C; Ahorn H; Freissmuth M
    J Biol Chem; 1994 Dec; 269(50):32008-15. PubMed ID: 7989377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there a rate-limiting step before GTP cleavage by H-ras p21?
    Rensland H; Lautwein A; Wittinghofer A; Goody RS
    Biochemistry; 1991 Nov; 30(46):11181-5. PubMed ID: 1932038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanosine 5'-O-(3-thiotriphosphate) and guanosine 5'-O-(2-thiodiphosphate) activate G proteins and potentiate fibroblast growth factor-induced DNA synthesis in hamster fibroblasts.
    Paris S; Pouysségur J
    J Biol Chem; 1990 Jul; 265(20):11567-75. PubMed ID: 2164008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of five different alpha subunits of guanine-nucleotide-binding proteins in bovine brain membranes. Their physiological properties concerning the activities of adenylate cyclase and atrial muscarinic K+ channels.
    Kobayashi I; Shibasaki H; Takahashi K; Tohyama K; Kurachi Y; Ito H; Ui M; Katada T
    Eur J Biochem; 1990 Jul; 191(2):499-506. PubMed ID: 2116967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mastoparan upon the late stages of the ACTH secretory pathway of AtT-20 cells.
    McFerran BW; Guild SB
    Br J Pharmacol; 1995 Jun; 115(4):696-702. PubMed ID: 7582493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.