These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8188659)

  • 21. Further studies on the mode of action of calcitonin on isolated rat osteoclasts: pharmacological evidence for a second site mediating intracellular Ca2+ mobilization and cell retraction.
    Alam AS; Bax CM; Shankar VS; Bax BE; Bevis PJ; Huang CL; Moonga BS; Pazianas M; Zaidi M
    J Endocrinol; 1993 Jan; 136(1):7-15. PubMed ID: 8429278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption.
    Chamoux E; Bisson M; Payet MD; Roux S
    J Biol Chem; 2010 Aug; 285(33):25354-62. PubMed ID: 20547482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of calcium disposal from osteoclastic resorption hemivacuole.
    Datta HK; Horrocks BR
    J Endocrinol; 2003 Jan; 176(1):1-5. PubMed ID: 12525243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts.
    Komarova SV; Pereverzev A; Shum JW; Sims SM; Dixon SJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2643-8. PubMed ID: 15695591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Divalent cations mimic the inhibitory effect of extracellular ionised calcium on bone resorption by isolated rat osteoclasts: further evidence for a "calcium receptor".
    Zaidi M; Kerby J; Huang CL; Alam T; Rathod H; Chambers TJ; Moonga BS
    J Cell Physiol; 1991 Dec; 149(3):422-7. PubMed ID: 1660481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption.
    van der Eerden BC; Hoenderop JG; de Vries TJ; Schoenmaker T; Buurman CJ; Uitterlinden AG; Pols HA; Bindels RJ; van Leeuwen JP
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17507-12. PubMed ID: 16291808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Sep; 125(3):1606-12. PubMed ID: 2547591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reappraisal of the effect of extracellular calcium on osteoclastic bone resorption.
    Hall TJ
    Biochem Biophys Res Commun; 1994 Jul; 202(1):456-62. PubMed ID: 8037747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts.
    Winding B; Wiltink A; Foged NT
    Exp Physiol; 1997 Sep; 82(5):871-86. PubMed ID: 9331555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+ or phorbol ester but not inflammatory stimuli elevate inducible nitric oxide synthase messenger ribonucleic acid and nitric oxide (NO) release in avian osteoclasts: autocrine NO mediates Ca2+-inhibited bone resorption.
    Sunyer T; Rothe L; Kirsch D; Jiang X; Anderson F; Osdoby P; Collin-Osdoby P
    Endocrinology; 1997 May; 138(5):2148-62. PubMed ID: 9112415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo.
    de la Mata J; Uy HL; Guise TA; Story B; Boyce BF; Mundy GR; Roodman GD
    J Clin Invest; 1995 Jun; 95(6):2846-52. PubMed ID: 7769125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory effect of interleukin-4 on osteoclast-like cell formation in mouse bone marrow culture.
    Kasono K; Sato K; Sato Y; Tsushima T; Shizume K; Demura H
    Bone Miner; 1993 Jun; 21(3):179-88. PubMed ID: 8400918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cellular actions of interleukin-11 on bone resorption in vitro.
    Hill PA; Tumber A; Papaioannou S; Meikle MC
    Endocrinology; 1998 Apr; 139(4):1564-72. PubMed ID: 9528935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel mechanisms of calcium handling by the osteoclast: A review-hypothesis.
    Zaidi M; Moonga BS; Adebanjo OA
    Proc Assoc Am Physicians; 1999; 111(4):319-27. PubMed ID: 10417740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of cytosolic calcium in differentiating rat pheochromocytoma cells on calcium channels and intracellular stores.
    Reber BF; Reuter H
    J Physiol; 1991 Apr; 435():145-62. PubMed ID: 1663159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of cytosolic free calcium in isolated rat osteoclasts by calcitonin.
    Moonga BS; Alam AS; Bevis PJ; Avaldi F; Soncini R; Huang CL; Zaidi M
    J Endocrinol; 1992 Feb; 132(2):241-9. PubMed ID: 1541924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin.
    Malgaroli A; Meldolesi J; Zallone AZ; Teti A
    J Biol Chem; 1989 Aug; 264(24):14342-7. PubMed ID: 2547794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of membrane potential on surface Ca2+ receptor activation in rat osteoclasts.
    Shankar VS; Huang CL; Adebanjo O; Simon B; Alam AS; Moonga BS; Pazianas M; Scott RH; Zaidi M
    J Cell Physiol; 1995 Jan; 162(1):1-8. PubMed ID: 7814441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of capacitive calcium entry and calcium store refilling in osteoclastic survival and bone resorption process.
    Mentaverri R; Kamel S; Brazier M
    Cell Calcium; 2003 Aug; 34(2):169-75. PubMed ID: 12810059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcitonin down-regulates immediate cell signals induced in human osteoclast-like cells by the bone sialoprotein-IIA fragment through a postintegrin receptor mechanism.
    Paniccia R; Riccioni T; Zani BM; Zigrino P; Scotlandi K; Teti A
    Endocrinology; 1995 Mar; 136(3):1177-86. PubMed ID: 7867571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.