These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8188720)

  • 1. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsteady effects on the flow across tilting disk valves.
    Rosenfeld M; Avrahami I; Einav S
    J Biomech Eng; 2002 Feb; 124(1):21-9. PubMed ID: 11871601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.
    Ge L; Leo HL; Sotiropoulos F; Yoganathan AP
    J Biomech Eng; 2005 Oct; 127(5):782-97. PubMed ID: 16248308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment.
    Maymir JC; Deutsch S; Meyer RS; Geselowitz DB; Tarbell JM
    Ann Biomed Eng; 1998; 26(1):146-56. PubMed ID: 10355559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative computational study of blood flow through prosthetic heart valves using the finite element method.
    Idelsohn SR; Costa LE; Ponso R
    J Biomech; 1985; 18(2):97-115. PubMed ID: 3988789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational approach for probing the flow through artificial heart devices.
    Kiris C; Kwak D; Rogers S; Chang ID
    J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of steady flow in a two-dimensional total artificial heart model.
    Kim SH; Chandran KB; Chen CJ
    J Biomech Eng; 1992 Nov; 114(4):497-503. PubMed ID: 1487902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
    Alemu Y; Bluestein D
    Artif Organs; 2007 Sep; 31(9):677-88. PubMed ID: 17725695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry.
    Ge L; Jones SC; Sotiropoulos F; Healy TM; Yoganathan AP
    J Biomech Eng; 2003 Oct; 125(5):709-18. PubMed ID: 14618930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cardiac flow rate on turbulent shear stress from a prosthetic heart valve.
    Schwarz AC; Tiederman WG; Phillips WM
    J Biomech Eng; 1988 May; 110(2):123-8. PubMed ID: 2967905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results.
    King MJ; Corden J; David T; Fisher J
    J Biomech; 1996 May; 29(5):609-18. PubMed ID: 8707787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with PIV techniques.
    Lim WL; Chew YT; Chew TC; Low HT
    J Biomech; 1998 May; 31(5):411-21. PubMed ID: 9727338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the monodimensional approach to the estimation of the highest reynolds shear stress in a turbulent flow.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Biomech; 2000 Jun; 33(6):701-8. PubMed ID: 10807991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of three-dimensional Björk-Shiley valvular flow in an aorta.
    Shim EB; Chang KS
    J Biomech Eng; 1997 Feb; 119(1):45-51. PubMed ID: 9083848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulent flows through a disk-type prosthetic heart valve.
    Yang WJ; Wang JH
    J Biomech Eng; 1983 Aug; 105(3):263-7. PubMed ID: 6632829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.