These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 8189204)

  • 21. Histamine H(2) receptor activated chloride conductance in myenteric neurons from guinea pig small intestine.
    Starodub AM; Wood JD
    J Neurophysiol; 2000 Apr; 83(4):1809-16. PubMed ID: 10758093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block.
    Copello J; Heming TA; Segal Y; Reuss L
    J Gen Physiol; 1993 Aug; 102(2):177-99. PubMed ID: 8228907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further study of soma, dendrite, and axon excitation in single neurons.
    EYZAGUIRRE C; KUFFLER SW
    J Gen Physiol; 1955 Sep; 39(1):121-53. PubMed ID: 13252238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction.
    Pifferi S; Pascarella G; Boccaccio A; Mazzatenta A; Gustincich S; Menini A; Zucchelli S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12929-34. PubMed ID: 16912113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of increased intracellular Cl- concentration on membrane responses to acetylcholine in the isolated endothelium of guinea pig mesenteric arteries.
    Yamamoto Y; Suzuki H
    J Physiol Sci; 2007 Feb; 57(1):31-41. PubMed ID: 17190590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
    Maher BJ; Westbrook GL
    J Neurophysiol; 2005 Dec; 94(6):3743-50. PubMed ID: 16107526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia.
    Delgado R; Mura CV; Bacigalupo J
    BMC Neurosci; 2016 Apr; 17(1):17. PubMed ID: 27113933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-activated and odor-modulated conductances in olfactory neurons of Drosophila melanogaster.
    Dubin AE; Harris GL
    J Neurobiol; 1997 Jan; 32(1):123-37. PubMed ID: 8989668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of a Ca(2+)-activated Cl(-) conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout.
    Sato K; Suzuki N
    J Exp Biol; 2000 Jan; 203(Pt 2):253-62. PubMed ID: 10607535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells.
    Sagheddu C; Boccaccio A; Dibattista M; Montani G; Tirindelli R; Menini A
    J Physiol; 2010 Nov; 588(Pt 21):4189-204. PubMed ID: 20837642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones.
    Firestein S; Shepherd GM; Werblin FS
    J Physiol; 1990 Nov; 430():135-58. PubMed ID: 2086763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplification of odor-induced Ca(2+) transients by store-operated Ca(2+) release and its role in olfactory signal transduction.
    Zufall F; Leinders-Zufall T; Greer CA
    J Neurophysiol; 2000 Jan; 83(1):501-12. PubMed ID: 10634891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms.
    Horning MS; Trombley PQ
    J Neurophysiol; 2001 Oct; 86(4):1652-60. PubMed ID: 11600628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postnatal development of membrane excitability in taste cells of the mouse vallate papilla.
    Bigiani A; Cristiani R; Fieni F; Ghiaroni V; Bagnoli P; Pietra P
    J Neurosci; 2002 Jan; 22(2):493-504. PubMed ID: 11784795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.
    Tadesse T; Derby CD; Schmidt M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jan; 200(1):53-76. PubMed ID: 24178131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites.
    Stuart GJ; Sakmann B
    Nature; 1994 Jan; 367(6458):69-72. PubMed ID: 8107777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.