These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 8189384)

  • 21. Caesium blocks depolarizing after-potentials and phasic firing in rat supraoptic neurones.
    Ghamari-Langroudi M; Bourque CW
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):165-75. PubMed ID: 9625875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.
    Johnston AR; MacLeod NK; Dutia MB
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiology of guinea-pig supraoptic neurones: role of a hyperpolarization-activated cation current in phasic firing.
    Erickson KR; Ronnekleiv OK; Kelly MJ
    J Physiol; 1993 Jan; 460():407-25. PubMed ID: 8487202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.
    Kim YI; Dudek FE
    J Physiol; 1993 May; 464():229-43. PubMed ID: 8229799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of supraoptic magnocellular neurones isolated from the adult rat.
    Oliet SH; Bourque CW
    J Physiol; 1992 Sep; 455():291-306. PubMed ID: 1362442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro.
    Armstrong WE; Wang L; Li C; Teruyama R
    J Neuroendocrinol; 2010 May; 22(5):330-42. PubMed ID: 20210845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of action potentials and apamin-sensitive after-potentials in mouse vestibular nucleus neurones.
    Dutia MB; Johnston AR
    Exp Brain Res; 1998 Jan; 118(2):148-54. PubMed ID: 9547083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calbindin-D28k: role in determining intrinsically generated firing patterns in rat supraoptic neurones.
    Li Z; Decavel C; Hatton GI
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):601-8. PubMed ID: 8576851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons.
    Bourque CW; Brown DA
    Neurosci Lett; 1987 Nov; 82(2):185-90. PubMed ID: 3696492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-synaptic depolarizing potentials in rat supraoptic neurones recorded in vitro.
    Bourque CW; Randle JC; Renaud LP
    J Physiol; 1986 Jul; 376():493-505. PubMed ID: 3795081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic basis of the differential neuronal activity of guinea-pig septal nucleus studied in vitro.
    Alvarez de Toledo G; López-Barneo J
    J Physiol; 1988 Feb; 396():399-415. PubMed ID: 2457690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro.
    Sabatier N; Brown CH; Ludwig M; Leng G
    J Physiol; 2004 Jul; 558(Pt 1):161-80. PubMed ID: 15146047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM; Foehring RC
    J Neurophysiol; 1992 Feb; 67(2):350-63. PubMed ID: 1373765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxytocin release following osmotic activation of oxytocin neurones in the paraventricular and supraoptic nuclei.
    Brimble MJ; Dyball RE; Forsling ML
    J Physiol; 1978 May; 278():69-78. PubMed ID: 209173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1996 Feb; 75(2):795-810. PubMed ID: 8714653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro.
    Bourque CW; Renaud LP
    J Physiol; 1985 Jun; 363():429-39. PubMed ID: 3926995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity in the interaction of high-voltage-activated Ca
    Kirchner MK; Foehring RC; Callaway J; Armstrong WE
    J Neurophysiol; 2018 Oct; 120(4):1728-1739. PubMed ID: 30020842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxytocin Neurones: Intrinsic Mechanisms Governing the Regularity of Spiking Activity.
    Maícas Royo J; Brown CH; Leng G; MacGregor DJ
    J Neuroendocrinol; 2016 Apr; 28(4):n/a. PubMed ID: 26715365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.