These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8189704)

  • 1. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro investigation of the acetabular labral seal in hip joint mechanics.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    J Biomech; 2003 Feb; 36(2):171-8. PubMed ID: 12547354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic surface amorphous layer lubrication of articular cartilage.
    Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J
    Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element prediction of cartilage contact stresses in normal human hips.
    Harris MD; Anderson AE; Henak CR; Ellis BJ; Peters CL; Weiss JA
    J Orthop Res; 2012 Jul; 30(7):1133-9. PubMed ID: 22213112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas.
    Moore AC; Burris DL
    J Biomech; 2014 Jan; 47(1):148-53. PubMed ID: 24275436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the acetabular labrum seal, intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of a spherical synovial joint.
    Hlavácek M
    J Biomech; 2002 Oct; 35(10):1325-35. PubMed ID: 12231278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Load sharing between solid and fluid phases in articular cartilage: II--Comparison of experimental results and u-p finite element predictions.
    Mukherjee N; Wayne JS
    J Biomech Eng; 1998 Oct; 120(5):620-4. PubMed ID: 10412440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new discrete element analysis method for predicting hip joint contact stresses.
    Abraham CL; Maas SA; Weiss JA; Ellis BJ; Peters CL; Anderson AE
    J Biomech; 2013 Apr; 46(6):1121-7. PubMed ID: 23453394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    J Biomech; 2000 Aug; 33(8):953-60. PubMed ID: 10828325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hip joint geometry effects on cartilage contact stresses during a gait cycle.
    Hui-Hui Wu ; Dong Wang ; An-Bang Ma ; Dong-Yun Gu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6038-6041. PubMed ID: 28269629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress.
    Gu DY; Hu F; Wei JH; Dai KR; Chen YZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8166-9. PubMed ID: 22256237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An asymptotic solution for the contact of two biphasic cartilage layers.
    Ateshian GA; Lai WM; Zhu WB; Mow VC
    J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of cartilage contact pressure and loading in the hip joint during split posture.
    Assassi L; Magnenat-Thalmann N
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):745-56. PubMed ID: 26450106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip.
    Haemer JM; Carter DR; Giori NJ
    J Biomech; 2012 May; 45(8):1450-6. PubMed ID: 22391467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acetabular labrum seal: a poroelastic finite element model.
    Ferguson SJ; Bryant JT; Ganz R; Ito K
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):463-8. PubMed ID: 10771126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.