These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8189704)

  • 21. The effect of contact stress on cartilage friction, deformation and wear.
    Lizhang J; Fisher J; Jin Z; Burton A; Williams S
    Proc Inst Mech Eng H; 2011 May; 225(5):461-75. PubMed ID: 21755776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint.
    Li J; Hua X; Jones AC; Williams S; Jin Z; Fisher J; Wilcox RK
    J Biomech; 2016 Jun; 49(9):1679-1685. PubMed ID: 27079623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone.
    Wang Y; Wei HW; Yu TC; Cheng CK
    Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A contact-coupled finite element analysis of the natural adult hip.
    Brown TD; DiGioia AM
    J Biomech; 1984; 17(6):437-48. PubMed ID: 6480619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of cartilage geometry on the pressure distribution in the human hip joint.
    Rushfeld PD; Mann RW; Harris WH
    Science; 1979 Apr; 204(4391):413-5. PubMed ID: 441729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint.
    Hua X; Shu L; Li J
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1145-1155. PubMed ID: 35482145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element prediction of transchondral stress and strain in the human hip.
    Henak CR; Ateshian GA; Weiss JA
    J Biomech Eng; 2014 Feb; 136(2):021021. PubMed ID: 24292495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro measurement of articular cartilage deformations in the intact human hip joint under load.
    Armstrong CG; Bahrani AS; Gardner DL
    J Bone Joint Surg Am; 1979 Jul; 61(5):744-55. PubMed ID: 457718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 1998 Oct; 120(5):608-13. PubMed ID: 10412438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
    Anderson AE; Ellis BJ; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1351-7. PubMed ID: 20176359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Load partitioning influences the mechanical response of articular cartilage.
    Wayne JS
    Ann Biomed Eng; 1995; 23(1):40-7. PubMed ID: 7762881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a hip joint model for finite volume simulations.
    Cardiff P; Karač A; FitzPatrick D; Ivanković A
    J Biomech Eng; 2014 Jan; 136(1):011006. PubMed ID: 24141555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in articular cartilage mechanics with meniscectomy: A novel image-based modeling approach and comparison to patterns of OA.
    Haemer JM; Song Y; Carter DR; Giori NJ
    J Biomech; 2011 Aug; 44(12):2307-12. PubMed ID: 21741046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Congruency effects on load bearing in diarthrodial joints.
    Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint.
    Pawaskar SS; Ingham E; Fisher J; Jin Z
    Med Eng Phys; 2011 Jan; 33(1):96-105. PubMed ID: 20951626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of normal and osteoarthritic human articular cartilage.
    Robinson DL; Kersh ME; Walsh NC; Ackland DC; de Steiger RN; Pandy MG
    J Mech Behav Biomed Mater; 2016 Aug; 61():96-109. PubMed ID: 26851527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.