These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8189704)

  • 41. Changes in chondrolabral mechanics, coverage, and congruency following peri-acetabular osteotomy for treatment of acetabular retroversion: A patient-specific finite element study.
    Knight SJ; Abraham CL; Peters CL; Weiss JA; Anderson AE
    J Orthop Res; 2017 Nov; 35(11):2567-2576. PubMed ID: 28370312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results.
    Mann RW
    Proc Inst Mech Eng H; 2001; 215(1):123-4. PubMed ID: 11323982
    [No Abstract]   [Full Text] [Related]  

  • 43. Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum.
    Pawaskar SS; Grosland NM; Ingham E; Fisher J; Jin Z
    J Biomech; 2011 May; 44(8):1536-42. PubMed ID: 21439570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Salo J; Korhonen RK
    J Biomech; 2014 Jul; 47(10):2467-74. PubMed ID: 24813824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses.
    Mononen ME; Julkunen P; Töyräs J; Jurvelin JS; Kiviranta I; Korhonen RK
    Biomech Model Mechanobiol; 2011 Jun; 10(3):357-69. PubMed ID: 20628782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A finite element exploration of cartilage stress near an articular incongruity during unstable motion.
    Goreham-Voss CM; McKinley TO; Brown TD
    J Biomech; 2007; 40(15):3438-47. PubMed ID: 17604036
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contact pressures in the human hip joint measured in vivo.
    Hodge WA; Fijan RS; Carlson KL; Burgess RG; Harris WH; Mann RW
    Proc Natl Acad Sci U S A; 1986 May; 83(9):2879-83. PubMed ID: 3458248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Collagen network of articular cartilage modulates fluid flow and mechanical stresses in chondrocyte.
    Korhonen RK; Julkunen P; Rieppo J; Lappalainen R; Konttinen YT; Jurvelin JS
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):150-9. PubMed ID: 16506019
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects.
    Adouni M; Shirazi-Adl A
    J Orthop Res; 2014 Jan; 32(1):69-78. PubMed ID: 24038150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comments on the influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model.
    Mann RW
    J Biomech; 2002 Jan; 35(1):147-9. PubMed ID: 11747894
    [No Abstract]   [Full Text] [Related]  

  • 51. Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties.
    Warner MD; Taylor WR; Clift SE
    Med Eng Phys; 2004 Apr; 26(3):247-9. PubMed ID: 14984846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study.
    Hua X; Li J; Wilcox RK; Fisher J; Jones AC
    Proc Inst Mech Eng H; 2015 Aug; 229(8):570-80. PubMed ID: 26112348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers.
    Li J; Stewart TD; Jin Z; Wilcox RK; Fisher J
    J Biomech; 2013 Jun; 46(10):1641-7. PubMed ID: 23664238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finite element analysis of the ovine hip: development, results and comparison with the human hip.
    Mazoochian F; Hölzer A; Jalali J; Schmidutz F; Schröder C; Woiczinski M; Maierl J; Augat P; Jansson V
    Vet Comp Orthop Traumatol; 2012; 25(4):301-6. PubMed ID: 22534728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.
    Jones B; Hung CT; Ateshian G
    J Knee Surg; 2016 Feb; 29(2):92-8. PubMed ID: 26641078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
    Dabiri Y; Li L
    Int J Numer Method Biomed Eng; 2015 Jun; 31(6):. PubMed ID: 25727068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.