These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8189704)

  • 61. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microscale surface friction of articular cartilage in early osteoarthritis.
    Desrochers J; Amrein MW; Matyas JR
    J Mech Behav Biomed Mater; 2013 Sep; 25():11-22. PubMed ID: 23726921
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum--I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness.
    Rushfeldt PD; Mann RW; Harris WH
    J Biomech; 1981; 14(4):253-60. PubMed ID: 7240287
    [No Abstract]   [Full Text] [Related]  

  • 65. Mechanical conditioning of articular cartilage to prevalent stresses.
    Yao JQ; Seedhom BB
    Br J Rheumatol; 1993 Nov; 32(11):956-65. PubMed ID: 8220934
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of Bernese periacetabular osteotomy: prospective studies examining projected load-bearing area, bone density, cartilage thickness and migration.
    Mechlenburg I
    Acta Orthop Suppl; 2008 Jun; 79(329):4-43. PubMed ID: 18853289
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hypothesis of regulation of hip joint cartilage activity by mechanical loading.
    Daniel M; Sochor M; Iglic A; Kralj-Iglic V
    Med Hypotheses; 2003 Jun; 60(6):936-7. PubMed ID: 12699729
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of the lateral rotators on load transfer in the human hip joint revealed by mechanical analysis.
    Weißgraeber P; V D Wall H; Khabbazeh S; Kroker AM; Becker W
    Ann Anat; 2012 Sep; 194(5):461-6. PubMed ID: 22694841
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis.
    Stender ME; Regueiro RA; Ferguson VL
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):319-331. PubMed ID: 27635796
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling.
    Pawaskar SS; Fisher J; Jin Z
    J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage.
    Démarteau O; Pillet L; Inaebnit A; Borens O; Quinn TM
    Osteoarthritis Cartilage; 2006 Jun; 14(6):589-96. PubMed ID: 16478669
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of porosity of articular cartilage on the lubrication of a normal human hip joint.
    Jin ZM; Dowson D; Fisher J
    Proc Inst Mech Eng H; 1992; 206(3):117-24. PubMed ID: 1482507
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of clearance on the time-dependent performance of the hip following hemiarthroplasty: a finite element study with biphasic acetabular cartilage properties.
    Li J; Hua X; Jin Z; Fisher J; Wilcox RK
    Med Eng Phys; 2014 Nov; 36(11):1449-54. PubMed ID: 24957488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Apr; 44(7):1340-5. PubMed ID: 21316681
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Time dependent human hip joint lubrication for periodic motion with stochastic asymmetric density function.
    Wierzcholski K
    Acta Bioeng Biomech; 2014; 16(1):83-97. PubMed ID: 24707824
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.
    Mononen ME; Jurvelin JS; Korhonen RK
    Comput Methods Biomech Biomed Engin; 2015; 18(2):141-52. PubMed ID: 23570549
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Application of the u-p finite element method to the study of articular cartilage.
    Wayne JS; Woo SL; Kwan MK
    J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of macro-cracks on the load bearing capacity of articular cartilage.
    Komeili A; Chau W; Herzog W
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1371-1381. PubMed ID: 30993486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.