These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8189704)

  • 81. The importance of femur/acetabulum cartilage in the biomechanics of the intact hip: experimental and numerical assessment.
    Duarte RJ; Ramos A; Completo A; Relvas C; Simões JA
    Comput Methods Biomech Biomed Engin; 2015; 18(8):880-9. PubMed ID: 24261321
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hip joint degeneration due to cam impingement: a finite element analysis.
    Hellwig FL; Tong J; Hussell JG
    Comput Methods Biomech Biomed Engin; 2016; 19(1):41-8. PubMed ID: 25567413
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support.
    Cooper BG; Lawson TB; Snyder BD; Grinstaff MW
    Osteoarthritis Cartilage; 2017 Jul; 25(7):1143-1149. PubMed ID: 28285000
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Sliding friction analysis of phosphatidylcholine as a boundary lubricant for articular cartilage.
    Williams PF; Powell GL; LaBerge M
    Proc Inst Mech Eng H; 1993; 207(1):59-66. PubMed ID: 8363698
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint.
    von Eisenhart R; Adam C; Steinlechner M; Müller-Gerbl M; Eckstein F
    J Orthop Res; 1999 Jul; 17(4):532-9. PubMed ID: 10459759
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Transmission of rapidly applied loads through articular cartilage. Part 1: Uncracked cartilage.
    Kelly PA; O'Connor JJ
    Proc Inst Mech Eng H; 1996; 210(1):27-37. PubMed ID: 8663890
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure.
    Donzelli PS; Spilker RL; Ateshian GA; Mow VC
    J Biomech; 1999 Oct; 32(10):1037-47. PubMed ID: 10476842
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 90. An investigation of the stress distribution generated in articular cartilage by crystal aggregates of varying material properties.
    Hayes A; Clift SE; Miles AW
    Med Eng Phys; 1997 Apr; 19(3):242-52. PubMed ID: 9239643
    [TBL] [Abstract][Full Text] [Related]  

  • 91. In vitro contact stress distributions in the natural human hip.
    Brown TD; Shaw DT
    J Biomech; 1983; 16(6):373-84. PubMed ID: 6619156
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The physiology and degeneration of joints.
    Radin EL
    Semin Arthritis Rheum; 1972-1973; 2(3):245-57. PubMed ID: 4581668
    [No Abstract]   [Full Text] [Related]  

  • 93. The effects of hip contact aberrations on stress patterns within the human femoral head.
    Brown TD; Ferguson AB
    Ann Biomed Eng; 1980; 8(1):75-92. PubMed ID: 7458020
    [No Abstract]   [Full Text] [Related]  

  • 94. Effect of fluid boundary conditions on joint contact mechanics and applications to the modeling of osteoarthritic joints.
    Federico S; La Rosa G; Herzog W; Wu JZ
    J Biomech Eng; 2004 Apr; 126(2):220-5. PubMed ID: 15179852
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mechanical analysis of the human pelvis and its application to the artificial hip joint--by means of the three dimensional finite element method.
    Oonishi H; Isha H; Hasegawa T
    J Biomech; 1983; 16(6):427-44. PubMed ID: 6619159
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The acetabular labrum seal: a poroelastic finite element model.
    Mann RW
    Clin Biomech (Bristol, Avon); 2001 Nov; 16(9):820-3. PubMed ID: 11714560
    [No Abstract]   [Full Text] [Related]  

  • 97. Multiscale biomechanics of the biphasic articular cartilage in the natural hip joint during routine activities.
    Hua X; Li J; De Pieri E; Ferguson SJ
    Comput Methods Programs Biomed; 2022 Mar; 215():106606. PubMed ID: 35016083
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Modeling axi-symmetrical joint contact with biphasic cartilage layers--an asymptotic solution.
    Wu JZ; Herzog W; Ronsky J
    J Biomech; 1996 Oct; 29(10):1263-81. PubMed ID: 8884472
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A dynamic finite element analysis of impulsive loading of the extension-splinted rabbit knee.
    Anderson DD; Brown TD; Yang KH; Radin EL
    J Biomech Eng; 1990 May; 112(2):119-28. PubMed ID: 2345441
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Finite-element analysis in cartilage biomechanics.
    Clift SE
    J Biomed Eng; 1992 May; 14(3):217-21. PubMed ID: 1588779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.