These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8189705)
1. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. Moore JE; Ku DN J Biomech Eng; 1994 Feb; 116(1):107-11. PubMed ID: 8189705 [TBL] [Abstract][Full Text] [Related]
2. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. Moore JE; Ku DN J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637 [TBL] [Abstract][Full Text] [Related]
3. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. Pedersen EM; Sung HW; Burlson AC; Yoganathan AP J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828 [TBL] [Abstract][Full Text] [Related]
4. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. Moore JE; Ku DN; Zarins CK; Glagov S J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493 [TBL] [Abstract][Full Text] [Related]
5. Effect of exercise on hemodynamic conditions in the abdominal aorta. Taylor CA; Hughes TJ; Zarins CK J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942 [TBL] [Abstract][Full Text] [Related]
6. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. Pedersen EM; Sung HW; Yoganathan AP J Biomech Eng; 1994 Aug; 116(3):347-54. PubMed ID: 7799638 [TBL] [Abstract][Full Text] [Related]
7. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. Ku DN; Glagov S; Moore JE; Zarins CK J Vasc Surg; 1989 Feb; 9(2):309-16. PubMed ID: 2918626 [TBL] [Abstract][Full Text] [Related]
8. Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation. Pedersen EM; Yoganathan AP; Lefebvre XP J Biomech; 1992 Aug; 25(8):935-44. PubMed ID: 1639838 [TBL] [Abstract][Full Text] [Related]
9. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Taylor CA; Hughes TJ; Zarins CK Ann Biomed Eng; 1998; 26(6):975-87. PubMed ID: 9846936 [TBL] [Abstract][Full Text] [Related]
10. Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. Cheng CP; Herfkens RJ; Taylor CA Am J Physiol Heart Circ Physiol; 2003 Apr; 284(4):H1161-7. PubMed ID: 12595296 [TBL] [Abstract][Full Text] [Related]
11. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Tang BT; Cheng CP; Draney MT; Wilson NM; Tsao PS; Herfkens RJ; Taylor CA Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H668-76. PubMed ID: 16603687 [TBL] [Abstract][Full Text] [Related]
12. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Moore JE; Xu C; Glagov S; Zarins CK; Ku DN Atherosclerosis; 1994 Oct; 110(2):225-40. PubMed ID: 7848371 [TBL] [Abstract][Full Text] [Related]
13. Comparison of steady and pulsatile flow in a double branching arterial model. Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546 [TBL] [Abstract][Full Text] [Related]
14. Development of velocity profiles and retrograde flow in the porcine abdominal aorta under different haemodynamic conditions. Pedersen EM; Kim WY; Staalsen NH; Hasenkam JM; Nygaard H; Paulsen PK Scand Cardiovasc J; 1999; 33(4):206-14. PubMed ID: 10517207 [TBL] [Abstract][Full Text] [Related]
15. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. Moore JE; Maier SE; Ku DN; Boesiger P J Appl Physiol (1985); 1994 Apr; 76(4):1520-7. PubMed ID: 8045828 [TBL] [Abstract][Full Text] [Related]
16. Aortic velocity contours at abdominal branches in anesthetized dogs. Hutchison KJ; Karpinski E; Campbell JD; Potemkowski AP J Biomech; 1988; 21(4):277-86. PubMed ID: 2968344 [TBL] [Abstract][Full Text] [Related]
17. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. Cheng CP; Herfkens RJ; Taylor CA J Vasc Surg; 2003 Jan; 37(1):118-23. PubMed ID: 12514587 [TBL] [Abstract][Full Text] [Related]
18. In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Taylor CA; Cheng CP; Espinosa LA; Tang BT; Parker D; Herfkens RJ Ann Biomed Eng; 2002 Mar; 30(3):402-8. PubMed ID: 12051624 [TBL] [Abstract][Full Text] [Related]
19. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults. Pedersen EM; Agerbaek M; Kristensen IB; Yoganathan AP Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches. Lee D; Chen JY J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]