These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 818973)

  • 1. Transport of maltose by Pseudomonas fluorescens W.
    Guffanti A; Corpe WA
    Arch Microbiol; 1976 May; 108(1):75-83. PubMed ID: 818973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maltose metabolism of Pseudomonas fluorescens.
    Guffanti AA; Corpe WA
    J Bacteriol; 1975 Oct; 124(1):262-8. PubMed ID: 240805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial purification and characterization of alpha-glucosidase from Pseudomonas fluorescens W.
    Guffanti AA; Corpe WA
    Arch Microbiol; 1976 Apr; 107(3):269-76. PubMed ID: 818970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of membrane vesicles from Acholeplasma laidlawii. III. Evidence of active nature of glucose transport.
    Fedotov NS; Panchenko LF; Tarshis MA
    Folia Microbiol (Praha); 1975; 20(6):488-95. PubMed ID: 1193497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maltose uptake and its regulation in Bacillus subtilis.
    Tangney M; Buchanan CJ; Priest FG; Mitchell WJ
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):191-6. PubMed ID: 1427001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naphthalene uptake by a Pseudomonas fluorescens isolate.
    Whitman BE; Lueking DR; Mihelcic JR
    Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and hydrolysis of maltose by Schwanniomyces castellii.
    Violle P; Boze H; Moulin G; Galzy P
    J Basic Microbiol; 1992; 32(1):57-63. PubMed ID: 1382126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of p-nitrophenyl-alpha-maltoside by the maltose transport system of Escherichia coli and its subsequent hydrolysis by a cytoplasmic alpha-maltosidase.
    Reyes M; Treptow NA; Shuman HA
    J Bacteriol; 1986 Mar; 165(3):918-22. PubMed ID: 3512530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis.
    Xavier KB; Martins LO; Peist R; Kossmann M; Boos W; Santos H
    J Bacteriol; 1996 Aug; 178(16):4773-7. PubMed ID: 8759837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the 3-o-methyl-D-glucose transport system in Acholeplasma laidlawii.
    Tarshis MA; Bekkouzjin AG; Ladygina VG; Panchenko LF
    J Bacteriol; 1976 Jan; 125(1):1-7. PubMed ID: 1368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On porcine pancreatic alpha-amylase action: kinetic evidence for the binding of two maltooligosaccharide molecules (maltose, maltotriose and o-nitrophenylmaltoside) by inhibition studies. Correlation with the five-subsite energy profile.
    Seigner C; Prodanov E; Marchis-Mouren G
    Eur J Biochem; 1985 Apr; 148(1):161-8. PubMed ID: 3872211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
    Ohtake H; Cervantes C; Silver S
    J Bacteriol; 1987 Aug; 169(8):3853-6. PubMed ID: 3112130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of maltose and maltotriose transport in the acarbose-producing bacterium Actinoplanes sp.
    Brunkhorst C; Schneider E
    Res Microbiol; 2005 Sep; 156(8):851-7. PubMed ID: 15939574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Stambuk BU; de Araujo PS
    FEMS Yeast Res; 2001 Apr; 1(1):73-8. PubMed ID: 12702465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching.
    Szmelcman S; Schwartz M; Silhavy TJ; Boos W
    Eur J Biochem; 1976 May; 65(1):13-9. PubMed ID: 776623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux.
    Adebusuyi AA; Foght JM
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2587-96. PubMed ID: 22940805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis.
    ter Kuile BH; Müller M
    Parasitology; 1995 Jan; 110 ( Pt 1)():37-44. PubMed ID: 7845710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the maltose permease in genetically defined Saccharomyces strain.
    Chang YS; Dubin RA; Perkins E; Michels CA; Needleman RB
    J Bacteriol; 1989 Nov; 171(11):6148-54. PubMed ID: 2808304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane transport of p-nitrophenyl-alpha-galactoside by the melibiose carrier of Escherichia coli.
    Ottina K; Lopilato J; Wilson TH
    J Membr Biol; 1980 Sep; 56(2):169-75. PubMed ID: 7003151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.