These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8190085)

  • 21. Genomic exploration of the hemiascomycetous yeasts: 11. Kluyveromyces lactis.
    Bolotin-Fukuhara M; Toffano-Nioche C; Artiguenave F; Duchateau-Nguyen G; Lemaire M; Marmeisse R; Montrocher R; Robert C; Termier M; Wincker P; Wésolowski-Louvel M
    FEBS Lett; 2000 Dec; 487(1):66-70. PubMed ID: 11152886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function.
    Winkler AA; Bobok A; Zonneveld BJ; Steensma HY; Hooykaas PJ
    Yeast; 1998 Jan; 14(1):37-48. PubMed ID: 9483794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cis- and trans-acting factors involved in centromere function in Saccharomyces cerevisiae.
    Murphy M; Fitzgerald-Hayes M
    Mol Microbiol; 1990 Mar; 4(3):329-36. PubMed ID: 2192227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional diversity of silencers in budding yeasts.
    Sjöstrand JO; Kegel A; Aström SU
    Eukaryot Cell; 2002 Aug; 1(4):548-57. PubMed ID: 12456003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relocation of a cytoplasmic yeast linear plasmid to the nucleus is associated with circularization via nonhomologous recombination involving inverted terminal repeats.
    Gunge N; Takata H; Fukuda K; Iwao S; Miyakawa I
    Mol Gen Genet; 2000 Jun; 263(5):846-53. PubMed ID: 10905352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3.
    Stark MJ; Milner JS
    Yeast; 1989; 5(1):35-50. PubMed ID: 2538971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae.
    Cottarel G; Shero JH; Hieter P; Hegemann JH
    Mol Cell Biol; 1989 Aug; 9(8):3342-9. PubMed ID: 2552293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The centromere of budding yeast.
    Hegemann JH; Fleig UN
    Bioessays; 1993 Jul; 15(7):451-60. PubMed ID: 8379948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo genomic footprint of a yeast centromere.
    Densmore L; Payne WE; Fitzgerald-Hayes M
    Mol Cell Biol; 1991 Jan; 11(1):154-65. PubMed ID: 1986217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae.
    Baker RE; Rogers K
    Genetics; 2005 Dec; 171(4):1463-75. PubMed ID: 16079225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation.
    Jehn B; Niedenthal R; Hegemann JH
    Mol Cell Biol; 1991 Oct; 11(10):5212-21. PubMed ID: 1922041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries.
    Hennemuth B; Marx KA
    BMC Mol Biol; 2006 Mar; 7():12. PubMed ID: 16542422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae.
    Gaudet A; Fitzgerald-Hayes M
    Mol Cell Biol; 1987 Jan; 7(1):68-75. PubMed ID: 3550426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletions and rearrangements in Kluyveromyces lactis mitochondrial DNA.
    Hardy CM; Galeotti CL; Clark-Walker GD
    Curr Genet; 1989 Dec; 16(5-6):419-27. PubMed ID: 2692854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs.
    Fitzgerald-Hayes M; Clarke L; Carbon J
    Cell; 1982 May; 29(1):235-44. PubMed ID: 7049398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis.
    Irene C; Maciariello C; Cioci F; Camilloni G; Newlon CS; Fabiani L
    Mol Microbiol; 2004 Mar; 51(5):1413-23. PubMed ID: 14982634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis.
    Bolen PL; Eastman EM; Cihak PL; Hayman GT
    Yeast; 1994 Mar; 10(3):403-14. PubMed ID: 8017110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genes coding for mitochondrial proteins are more strongly biased in Kluyveromyces lactis than in Saccharomyces cerevisiae.
    Luani D; Lodi T; Ferrero I
    Curr Genet; 1994 Jul; 26(1):91-3. PubMed ID: 7954903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered response to growth rate changes in Kluyveromyces lactis versus Saccharomyces cerevisiae as demonstrated by heterologous expression of ribosomal protein 59 (CRY1).
    Larson GP; Rossi JJ
    Nucleic Acids Res; 1991 Sep; 19(17):4701-7. PubMed ID: 1891361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.